
Relation Extraction with
Attention-based Transfer Learning

RheinMain University of Applied Sciences
Faculty of Design Computer Science Media

Master Computer Science

Presented to obtain the Master of Science (M.Sc.)

Markus Eberts
April 17, 2019

Wiesbaden

Advisor: Prof. Dr. Adrian Ulges

Co-Advisor: Prof. Dr. Dirk Krechel



Erklärung gem. ABPO, Ziff. 6.4.3

Ich versichere, dass ich die Master-Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Wiesbaden
April 17, 2019

Markus Eberts

Erklärung zur Verwendung der Masterthesis

Hiermit erkläre ich mein Einverständnis mit den im Folgenden aufgeführten
Verbreitungsformen dieser Master-Arbeit:

Verbreitungsform Ja Nein
Einstellung der Arbeit in die Hochschulbibliothek mit Datenträger ×

Einstellung der Arbeit in die Hochschulbibliothek ohne Datenträger ×

Veröffentlichung des Titels der Arbeit im Internet ×

Veröffentlichung der Arbeit im Internet ×

Wiesbaden
April 17, 2019

Markus Eberts



Abstract

The Generative Pre-training Transformer (GP-Transformer), a deep attention-based neural
network, has recently achieved state-of-the-art results in many natural language processing
tasks. The model is trained in an unsupervised manner on a language modeling objective
and produces context-aware embeddings, which are then fine-tuned on the target domain. In
this work, the pre-trained GP-Transformer is employed for relation extraction. Using the
GP-Transformer as the core component of task-specific models, three relation extraction
subtasks are addressed: “Relation Classification”, “Few-Shot Relation Classification” and
“Joint Entity and Relation Extraction”: (1) In relation classification, the task is to predict
the relation that is expressed in a sentence between a given entity pair. This work explores
several methods to encode the target entities for the GP-Transformer and also investigates
how unsupervised pre-training improves the generalization capabilities of the model. In
experiments on the SemEval dataset, the model achieves competitive results with a macro-
F1 score of 87.34. (2) In few-shot relation classification the objective is to generalize to
new relations not encountered during training. Here the GP-Transformer is employed in a
prototypical network to classify relations based on only a few examples of the target relation.
The model achieves state-of-the-art results on the FewRel dataset, including an accuracy
of 92.11% in the 5-way 5-shot and 72.51% in the 10-way 1-shot setting. It is shown that
the GP-Transformer especially outperforms previous approaches when provided with just a
single example per target relation. (3) In joint entity and relation extraction, entities must be
predicted alongside the relation using a joint model. This work investigates a novel approach
that is based on an exhaustive search over candidate pairs. By employing the GP-Transformer
as an elaborate feature extractor, it is demonstrated that a fast exhaustive search is feasible
even on a large search space and that adding negative samples is crucial for the model’s
performance.

Finally, in a case study the use of the GP-Transformer for German text is explored: To learn
the syntax and the semantics of German text, the model is pre-trained on a large and diverse
German corpus. It is shown that the model is able to generate plausible German text and to
produce context-aware embeddings. When employed for joint entity and relation extraction,
the pre-trained model demonstrates remarkably generalization capabilities when trained on a
small-scale German-language dataset.
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Chapter 1

Introduction

Neural networks have been the most important driving factor for machine learning develop-
ment in the recent years. To solve a target problem, they are typically trained in a supervised
manner: By presenting the neural network a set of labeled samples, it learns to recognize
the recurring patterns that characterize the problem so as to map the network’s input to the
desired output. Since a small set of labeled samples can hardly cover the characteristics of
a complex problem, neural networks are often trained on a vast amount of data. However,
the annotation of training data is an expensive and time consuming task commonly done by
human annotators. Therefore such large quantities of labeled samples may not be available in
the target domain and can only be obtained at great expense. To circumvent this requirement,
an approach called transfer learning emerged: The neural network is pre-trained on data that
is available in a sufficient amount and the gained knowledge is then transferred to the target
domain or task.

Natural language processing (NLP) covers tasks that are required for computers to structure
and understand human language, such as machine translation, sentiment analysis or corefer-
ence resolution. In NLP transfer learning has recently gained traction with the introduction
of learned continuous real-valued word representations called word embeddings. Word
embeddings are trained in an unsupervised manner solely on the basis of unstructured text
and therefore require no manual annotation. Since word embeddings capture the semantics of
words, they can be employed in task-specific downstream models to improve generalization
capabilities. However, they come with one crucial limitation: Because word embeddings
are fixed they remain the same regardless of the specific sentence context where they occur.
This is especially adverse for polysemous and homonymous words, i.e. words that can
have varying context-dependent meanings. In a recent development, more complex model’s
are pre-trained on a language modeling objective and transferred to the target domain (e.g.
Radford et al. 2018, Peters et al. 2018, Devlin et al. 2018). In contrast to static word em-
beddings, these models are able to produce context-aware word representations and capture
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Relation Extraction with Attention-based Transfer Learning 6

more sophisticated relations between words. Fine-tuning pre-trained models on the target
task has lead to significant performance improvements in a large variety of NLP tasks.

A model based on such language model pre-training is investigated in this work and applied
to one of the key components of natural language processing: the extraction and classification
of semantic relations between entities in a particular sentence. The term entity refers to
names such as those of persons, organizations, etc., but also to other noun phrases that are
somehow related in a sentence. An example sentence with multiple entities and the relations
that are expressed between them is illustrated in Figure 1.1.

Raymond Fellay (16 January 1932 - 29 May 1994) was a Swiss alpine skier who competed in the 1956 Winter Olympics. 

born

died

citizenship

occupation
participated

Figure 1.1: Relation extraction aims at the extraction of semantic relations between two entities.

Applications of relation extraction are manifold: Many companies have access to an enor-
mous amount of unstructured text data, which includes text freely available on the world
wide web and internal company data. Information that is useful for the companies objectives
is scattered throughout this data and can only be collected and filtered manually with high
effort. Among others, relation extraction provides a way to automatically structure text in
the form of knowledge graphs (Xu, Li, et al. 2014, Byrne 2006, Toutanova et al. 2015). This
information in turn plays an integral role in many information extraction tasks: From medical
(Chang Wang and Fan 2014) and general (C. Wang et al. 2012) question and answering
systems (“Which therapy was mentioned for a certain diagnosis?”, “Was a specific damage
ever been detected on a product of our company?”, ...) to opinion mining (Kobayashi, Inui,
and Matsumoto 2007), relation extraction is frequently required to gain valuable insights
into various types of problems.

In this work, the GP-Transformer (Radford et al. 2018), a deep and attention-based model
that is pre-trained on a language modeling objective, is employed for three relation extraction
subtasks: “Relation Classification”, “Few-shot Relation Classification” and “Joint Entity and
Relation Extraction”. In experiments on two public standard datasets the following questions
are particularly addressed:

• The GP-Transformer was pre-trained by Radford et al. (2018) on an English-language
corpus and can therefore only be utilized for English data. How well does the GP-
Transformer perform when pre-trained on a German corpus and is employed for a
small-scale German-language relation extraction dataset?

RheinMain University of Applied Sciences Computer Science (M.Sc.)
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• In relation classification, the model is required to predict the relation between a specific
entity pair in the sentence. How can the GP-Transformer be adjusted to take the target
entities into account and to what extend does the unsupervised pre-training benefits
generalization?

• How can the GP-Transformer be adjusted to work in a few-shot scenario, i.e. a setting
where the model is required to predict a relation based on only a few samples per
relation type, and how well does it perform compared to other state-of-the-art models?

• Can the GP-Transformer be used as an elaborate feature extractor in a fast exhaustive
search to jointly not only extract the relation type but also localize the entities between
which the relation holds?

This work is divided into five chapters: In Chapter 2 the GP-Transformer as well as its
main component, the attention mechanism, is introduced. This chapter also includes the pre-
training of the GP-Transformer on a diverse German dataset as well as an investigation into
the model’s capabilities in producing context-aware word embeddings. Chapter 3 continues
with an introduction into relation extraction and introduces two relation extraction datasets.
Chapter 4 (relation classification), Chapter 5 (few-shot relation classification) and Chapter 6
(joint entity and relation extraction) deal with the three relation extraction subtasks explored
in this work and investigate how task-specific models that include the GP-Transformer as its
core part can be employed for these tasks. Finally, Chapter 7 reasons on the applicability of
the GP-Transformer for relation extraction and gives an outlook into possible future research
on this topic.

RheinMain University of Applied Sciences Computer Science (M.Sc.)



Chapter 2

The Generative Pre-Training
Transformer

While basic recurrent neural networks are a viable choice for NLP tasks due to their sequential
structure, they struggle at processing long-term information. The problem was reduced with
the introduction of gating mechanisms, such as in long short-term memory (LSTM, see
Hochreiter and Schmidhuber 1997) or gated recurrent unit (GRU, see Cho et al. 2014)
neural networks, which control the information flow in and out of the RNN’s hidden state.
Despite these improvements, however, RNNs tend to focus on the most recent inputs, in the
worst case loosing important information which was obtained multiple tokens before. This
behavior is especially bad for tasks such as machine translation, where models need to attend
to context-specific occurrences of words in the input sentence in order to translate them.

Recently, major successes were achieved by incorporating a new approach into recurrent
neural networks that enables them to focus on words over long ranges of the input sentence:
The Attention Mechanism (Bahdanau, Cho, and Bengio 2014). Traditionally, machine
translation models comprise of an encoder and decoder part. In the case of RNNs, the encoder
compresses the information of the source sentence into a single vector representation. After
that, the decoder uses this compressed version of the input in order to output the translated
words one by one. By adding attention, the decoder does not only process the last hidden
state of the encoder to output the next word, but incorporates every hidden state observed so
far by computing a weighted sum over the hidden states based on their similarity with the so
far translated sequence.

With the success of the attention mechanism in mind, Vaswani et al. (2017) proposed a new
model for machine translation that is based entirely on attention, getting rid of recurrence
altogether. This model, known as the Transformer, relies on a variant of attention called
self-attention by relating words in the input sentence to other words of the same input.
Self-attention is applied in both the encoder and decoder in addition to a decoder-encoder
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attention. Additionally, Vaswani et al. made major contributions by proposing new attention
extensions, such as the scaled dot-product and multi-head attention, which will both be
discussed in this chapter. They achieved a new state-of-the art in machine translation at a
lower training cost compared to recurrent neural networks, which are known to require more
training time compared to their sequential counterparts and are hard to parallelize beyond
batches of samples.

To employ the Transformer model for tasks that do not rely on an encoder-decoder ar-
chitecture, such as relation extraction, Radford et al. (2018) showed that the Transformer
decoder alone, a variant first used by Liu et al. (2018) for summarizing Wikipedia sentences,
achieves state-of-the-art results in many natural language processing tasks: This includes
natural language inference, Q&A and semantic similarity. By pre-training the Transformer
decoder in an unsupervised manner on a common language modeling objective, predicting
the next word of a sentence given the previous words, they show that only little fine-tuning
on the target task domain and no task specific architecture is required to outperform previous
models. This model is denoted as GP-Transformer (Generative Pre-training Transformer)
from now on. They key goal of this work is to explore the use of the GP-Transformer for
relation extraction, a domain which was not explored in the original work by Radford et al.
As a basis, transfer learning and particularly the GP-Transformer is discussed in-depth in
this chapter. Besides an discussion of the GP-Transformer’s architecture it is also shown
that the model produces context-aware embeddings and is able to generate syntactically and
semantically plausible text when pre-trained on a large German-language corpus.

2.1 Recent Transfer Learning Approaches in NLP

Humans develop a natural understanding of language through practice and increasing knowl-
edge throughout the years. This includes the ability to differentiate the meaning of words
based on their context, the awareness of word similarity (e.g. synonyms) and the recogni-
tion of semantic relations between words. Computers on the other hand have no inherent
knowledge about individual words. To them words are just sequences of characters with no
associated meaning. Perhaps the most crucial factor of the advances which were made in
natural language processing in the recent years is the unsupervised pre-training of dense
word representations (usually in form of real-valued vectors), which both capture syntactic
and semantic properties of words. These word representations are used as the input in a
large variety of different machine learning models to solve almost any NLP problem. More
recent approaches, like the GP-Transformer which is employed in this work for relation
extraction, go a step further and pre-train whole complex models in an unsupervised manner
on large text corpora. These models are then transfered to a new domain and fine-tuned on
the target task. In contrast to fixed word representations, they are able to learn more complex
interactions between words and to distinguish the meaning of words based on the context

RheinMain University of Applied Sciences Computer Science (M.Sc.)
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they appear in, for example to resolve polysemes and homonyms. This section gives a brief
overview of the advances in transfer learning for natural language processing in the recent
years.

One-Hot Encoding

One baseline representation of words is the famous one-hot encoding, where each
word of the vocabulary is mapped to a vector (with the length of the vocabulary
size) where the value at the corresponding index is set to 1 (and all others to 0).
Because words are treated as a distinct entity that share no overlapping properties,
this leads to the aforementioned problems: With the one-hot encoding, each word
is equally “distant” to all other words in the vocabulary, while in reality words can
be more similar to one another because of certain properties (synonyms, relations,
reflection, ...). For example, a desirable property of word encodings is that the vector
representations of semantically similar words are close together in the d-dimensional
encoding space, while words with no overlapping meaning lie far apart. Ultimately,
this allows a relation extraction model to generalize better: It should not matter
if “Raymond Fellay competed in the 1956 Winter Olympics” or “Raymond Fellay
participated in the 1956 Winter Olympics”, because both sentences have the same
meaning and the usage of “participated” instead of “competed” does not alter the
semantic relation between the two entities “Raymond Fellay” and “1956 Winter
Olympics”. Basically, word representations should capture prior knowledge of words,
which are hard to obtain on an eventually small scale dataset that is used to train a
machine learning system for a certain domain and target problem.

Fixed Word Embeddings

To counter the down sides of one-hot representations, an approach called word
embeddings emerged. A popular implementation called Word2vec was proposed by
Mikolov, Chen, et al. (2013). The term “embedding” describes the transfer of words
into a d-dimensional feature space and usually refers to dense, real-valued feature
vectors that also capture word semantics. Here the entries of the d-dimensional
embedding (e.g. d=300) can be interpreted as weights, depicting the proportion of a
specific property belonging to the word. Although Mikolov et al. were not the first to
represent words as a distributed vector, they made the training of word embeddings
feasible even on huge datasets and vocabularies (see Mikolov, Chen, et al. 2013 and
Mikolov, Sutskever, et al. 2013).

There are two variants of Word2Vec, CBOW and Skip-gram. The core idea of both
is that words are related if they appear in a similar context. This is especially clear
for interchangeable words: Because “participated” and “competed” have roughly
the same meaning they appear in similar contexts. Also terms like “cat” and “dog”,

RheinMain University of Applied Sciences Computer Science (M.Sc.)
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albeit not synonyms, probably appear in similar contexts and are therefore related
somehow. CBOW and Skip-gram employ different language modeling objectives: In
the Skip-gram network architecture, the training objective is to predict the probability
that a word from the vocabulary is a randomly selected nearby word. The training
objective of the CBOW architecture is essentially the reverse of the Skip-Gram
model: Given the surrounding words (the context), predict the probability of each
word of the vocabulary to be the target word. A favorable property of Word2Vec
and related models like GloVe (Pennington, Socher, and Manning 2014) is that they
can be trained in an unsupervised manner. As a consequence they do not rely on an
expensive annotation process but can be trained solely on an unlabeled corpus of
text data, which is fortunately freely available in the world wide web in a more than
sufficient amount.

Context-Aware Word Embeddings

Although word embeddings produced by Word2Vec or similar techniques lead to
significant performance gains in many NLP tasks, they are usually fixed and therefore
remain the same independent of the domain and specific sentence context. More
complex interactions between words and additional context sensitive information
can be utilized by transferring whole pre-trained models like the GP-Transformer to
a new domain or task. This is especially useful in order to disambiguate polysemous
and homonymous words, which can stand for different things in different contexts.
A common example for computer scientists is the lemma tree, which can stand
for multiple concepts (e.g. the botany tree or a data structure) depending on the
surrounding context. When searching for tree in WordNet (Fellbaum 1998), a large
lexical database, multiple senses are returned:

• “A tall perennial woody plant having a main trunk and branches forming a
distinct elevated crown [...]”

• “Tree diagram (a figure that branches from a single root) [...]”

• “Sir Herbert Beerbohm Tree (English actor and theatrical producer noted for
his lavish productions of Shakespeare (1853-1917))”

• “Force a person or an animal into a position from which he cannot escape”

• “tree, shoetree (stretch (a shoe) on a shoetree)”

• ...

Another example is the word bank, which may describe (among other things) a
river or a financial bank dependent on the context. Actually the meaning or sense

RheinMain University of Applied Sciences Computer Science (M.Sc.)
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of a large portion of words we use in our everyday language varies dependent on
the specific context. Besides being able to capture context-dependent information,
pre-trained models were shown to converge faster, require fewer training samples
and ultimately generalize better to new data (e.g. in Peters et al. (2018) or Radford
et al. (2018)).

To learn context-aware word embeddings, whole models are nowadays trained on a
language modeling objective and then employed and fine-tuned on the target task.
One objective which is frequently applied in state-of-the-art transfer learning models
is the forward language modeling objective, which computes the probability of
observing a sequence of tokens (t1, t2, ..., tl) by calculating the probability of each
token ti with respect to the tokens (t1, t2, ..., ti−1) occurring before ti:

P(t1, t2, ..., tl) =

l∏
i=1

P(ti | t1, t2, ..., ti−1) (2.1)

Here l refers to the length of the so-called context, i.e. the sequence of words which
is taken into account when the language model is trained on unstructured text. State-
of-the-art models operate on increasingly bigger contexts, the GP-Transformer for
example was pre-trained by Radford et al. (2018) on sequences of 512 tokens. With
this, language models are capable of learning even more complex relations between
words that potentially span over multiple sentences. Besides the GP-Transformer,
which is described in detail in the upcoming sections, multiple other language models,
which produce context-aware embeddings, have drawn attention in the recent years.
A brief description of three other popular models, namely ELMo (Peters et al. 2018),
ULMFit (Howard and Ruder 2018) and BERT (Devlin et al. 2018), is given in the
following:

ELMo: ELMo (Peters et al. 2018), which stands for “Embeddings from Language
Models”, is a bidirectional LSTM-based language model, which is pre-trained on a
large text corpus of 30 million sentences. Since the model is bidirectional, the final
context-aware token embeddings are a function of the entire sentence: Two LSTMs
(each with two layers) operate on the forward and backward direction of the sentence.
While the former is trained to solve the forward language modeling objective of
Equation 2.1, the latter essentially solves the reverse objective, i.e. by minimizing
the probability of observing ti given the sequence (ti+1, ti+2, ..., tl) of subsequent
tokens. ELMo then concatenates the LSTMs’ hidden states of the forward and
backward direction for each token in both layers. To obtain the final context-aware
embedding of a token, a task-specific weighting of the two layers and the initial
token representations, which are formed by character-based convolutional filters

RheinMain University of Applied Sciences Computer Science (M.Sc.)
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to map out-of-vocabulary words, is learned. Instead of fine-tuning ELMo on the
target task, Peters et al. employ state-of-the-art models for each evaluated task (e.g.
coreference resolution and named entity extraction) and use the context-aware ELMo
embeddings as input. By employing ELMo embeddings, the authors reported state-
of-the-art results in all considered tasks, with error reductions from 6% to 20% over
competitive baseline models. Moreover, they report a faster training convergence of
downstream models and simultaneously require fewer training samples.

ULMFit: Howard and Ruder (2018) also pre-train a (three) layer bidirectional LSTM
on the forward language modeling objective. In contrast to Peters et al. (2018), they
do not employ task-specific downstream models but instead fine-tune the ULMFit
(Universal Language Model Fine-tuning) model on each target task. After pre-
training the model on the Wikitext-103 (Merity et al. 2016) corpus, it is fine-tuned
on the target domain in two steps: (1) Fine-tune the model by language modeling on
the task specific samples, essentially adapting the language model to the task domain.
(2) Add an additional layer (e.g. linear softmax layer for classification tasks) and
minimize the respective target task objective. In order to prevent the model to forget
useful information which was obtained in the pre-training step during fine-tuning,
Howard et al. propose two novel fine-tuning techniques, namely discriminative
fine-tuning (Discr) and slanted triangular learning rates (STLR). While the former
uses different learning rates in each LSTM layer, the latter first linearly increases
the learning rate and then linearly decreases it during training. Howard et al. also
gradually unfreeze each layer during fine-tuning, starting with the last. ULMFit
outperformed state-of-the-art models in six different classification tasks with an error
reduction of up to 24%.

BERT: BERT (Bidirectional Encoder Representations from Transformers) by De-
vlin et al. (2018) was recently released and is similar in architecture to the GP-
Transformer. It consists of a Transformer decoder that is pre-trained on language
modeling. In contrast to the GP-Transformer, BERT is trained, as the name suggests,
in a bidirectional fashion by training the model simultaneously on two unsupervised
language modeling objectives: (1) In the masked LM task, randomly selected tokens
of the context are replaced with a special Mask token and must be predicted by the
model. Since the Mask token is not used during fine-tuning and the model is re-
quired to generate embeddings for every position, selected tokens are also randomly
replaced with other words or left unchanged. The authors claim, that with this adjust-
ment the model learns context-aware embedding for every input token. (2) For the
binary next sentence prediction task, the input context is divided into two segments.
In 50% of the cases, the second segment is replaced with a random other one of the
corpus. The task is to predict if the second segment actually follows the first (binary
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yes/no decision). Both tasks are pre-trained on a combination of the BooksCorpus
(Zhu et al. 2015) and English Wikipedia. Devlin et al. (2018) report state-of-the-art
results in 11 natural language processing tasks, even outperforming models such as
the aforementioned ELMo, ULMFit and the unidirectional GP-Transformer.

2.2 GP-Transformer Model

The GP-Transformer, which is employed in this work for semantic relation extraction,
relies on a component called self-attention and is pre-trained on a language modeling
objective. They key components of the GP-Transformer, such as multi-head self-
attention, position embeddings and byte pair input encoding, are described in this
section.

2.2.1 Self-Attention

Relating words to each other is one of the fundamentals of machine learning models
for natural language processing. In recurrent neural networks, words are related
indirectly by incorporating them in a contextual hidden state based on previous
words. Convolutional neural networks on the other hand merge information of words
by applying numerous filter masks, stretching over an increasingly bigger context
with each additional layer. Attention takes a more direct approach by relating words
based on a relevance scoring between them and adjusts the representation of words
with each attention application.

“In ancient times cats were worshipped as gods; they have not forgotten this.”
- Terry Pratchett

high attention

low attention

Figure 2.1: Attention is used to focus on relevant words of the input context, here by detecting what
the word “they” is referring to.

Figure 2.1 illustrates the idea behind attention: By paying attention to relevant words
in the sentence, neural network’s can detect important patterns of the sentence and
ignore surrounding noise, here by detecting that the word “they” refers to “cats” and
not “gods”.

The attention function can be described as the mapping of a query (e.g. the word
“they” in Figure 2.1) to an output by computing the weighted sum of the so-called
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Figure 2.2: Exemplary self-attention between vectors x j ∈ R4 (bottom). Depicted is the attention
from the last word of the sentence, “mat” (x6), to all other words of the sentence, including “mat”
itself. In a first step a relevance score between x6 and the embeddings of all other words of the
sentence are computed by a dot product between the corresponding vectors. Next, the resulting scores
are normalized by

√
d =

√
4 = 2. The softmax function is applied to obtain weights in the range

[0, 1]. The new representation of “mat”, y6, which incorporates other context words, is then computed
by a weighted sum over all vectors x j.

values based on the similarity between their corresponding so-called keys and the
query (Vaswani et al. 2017). Generally, the query, keys and values can come from
different sequences, e.g. the source and target sequence as in the decoder-encoder
attention of the original machine translation Transformer. However, in the case of
self-attention, which is employed in the GP-Transformer, attention is conducted on
tokens of the same sequence (Figure 2.2). In the first layer of the GP-Transformer,
the tokens are represented by their initial token embeddings x1, x2, ..., xl, where l
denotes the length of the sequence and xi ∈ Rd, with d referring to the dimensionality
of the vectors. Note that the initial token embeddings are also learned during pre-
training. Suppose we want to compute the attention function for an arbitrary token
xi of the input (e.g. the last token, as illustrated in Figure 2.2): In each attention
layer, the representation of the token is changed in three steps. In the first step, the
similarity between token xi and all other tokens of the input is calculated based on a
scoring function. This can be imagined as computing the relevance of each token
with respect to the target token xi. The GP-Transformer model employs a simple
dot-product scoring between the vectors that correspond to each token. The resulting
relevance scores are further scaled by a factor of 1

√
d
, resulting in:

si, j =
xi · x j
√

d
(2.2)
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where “·” denotes the dot product between the two vectors xi and x j. In the second
step, the scores are normalized by a softmax function in order to obtain a weight of
each token x j with respect to token xi.

ai, j = softmax(si, j) =
esi, j∑l

j′=1 esi, j′
(2.3)

Finally, the output of attention, i.e. the new embedding of token xi, is obtained
by taking a sum over all tokens of the input, including xi itself, weighted by the
corresponding weights ai, j:

yi =

l∑
j=1

ai, j · x j (2.4)

In practice, self-attention is carried out for all tokens at once by packing the token
embeddings xi into a matrix X ∈ Rl × d:

Self-Attention(X) = softmax
(X · XT

√
d

)
· X (2.5)

where the softmax function is applied row-wise to X·XT
√

d
. While the attention weights

can theoretically be computed with arbitrary scoring functions, Vaswani et al. (2017)
explain the reasoning of using scaled dot-product attention as being much faster and
more space-efficient compared to other common functions like the additive attention
used in Bahdanau, Cho, and Bengio (2014).

One of the key contributions of Vaswani et al. (2017) is the application of numerous
attentions at once on the same input, each operating on a different representation
subspace. They refer to this approach as the multi-head attention (Figure 2.3). For
each head, there are actually three mappings: In the case of self-attention, X is first
projected linearly to Qm = XWQ

m , Km = XWK
m and Vm = XWV

m in each head m. The
projected vector representation of a single token has the dimensionality dp = d

z ,
where z refers to the number of attention heads. The linear projections are matrices
WQ

m ,WK
m ,W

V
m ∈ Rd × dp , which are learned during training. The attention in a single

head m is computed for all tokens by:

Ym = softmax (
QmKT

m√
dp

)Vm (2.6)

with Ym ∈ Rl × dp . The final token embeddings are then obtained by concatenat-
ing every head (Y1, ...,Yz) and mapping the resulting vectors back to their original
dimensionality d (here ◦ denotes vector concatenation):
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Figure 2.3: Multi-head attention is conducted in different representation subspaces of the input tokens
xi, here packed into a matrix X ∈ Rl x d for a sentence of length l (bottom). The token embeddings are
first linearly projected. Self-attention then operates on each representation subspace separately. The
resulting vectors (Y1, ..., Yz) are concatenated and mapped back to the original input dimensionality d
by a linear layer.

Y = (Y1 ◦ Y2 ◦ ... ◦ Yz) ·Wo (2.7)

with Wo ∈ R z·dp × d and Y ∈ Rl × d. By applying these steps, each token embedding is
adjusted by incorporating relevant other tokens into its own representation, ultimately
leading to a more context-aware representation of the input tokens.

2.2.2 Architecture

The GP-Transformer architecture employed by Radford et al. (2018) for language
modeling and subsequent finetuning utilizes multi-head self-attention as its key
concept and is based on the original Transformer decoder component (Vaswani et al.
2017). As introduced in Liu et al. (2018), the encoder and decoder-encoder attention
layer is removed from the model, leaving only multi-head self-attention and one fully
connected feed-forward layer in a single Transformer Block (see Figure 2.4). Those
Transformer Blocks are stacked on top of each other and the final model consists
of n = 12 Blocks, each with one multi-head self-attention layer. Given a sequence
of tokens (t1, t2, ..., tl), the tokens are mapped to their corresponding embedding
vector by a lookup in the embedding matrix E ∈ �V × d (V denoting the vocabulary
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Figure 2.4: The GP-Transformer consists of 12 Transformer blocks and each block contains a
masked multi-head self-attention and a position-wise fully-connected layer. Layer normalization is
used throughout the model. Residual connections are also employed around the self-attention and
feed-forward layers. The input token embeddings xi are formed by adding position embeddings to the
original token embeddings.

size) to (u1,u2, ...,ul). In contrast to recurrent neural networks, which are able to
infer positional information through the successive processing of input data, the GP-
Transformer naturally cannot utilize any information about the positional structure
of the token sequence it operates on: In the self-attention layer, the token weights
are calculated independent of their position in the sequence. However, the ordering
of tokens plays an important role in many NLP tasks and also cannot be ignored
in language modeling. To add positional information to the Transformer model,
Radford et al. (2018) employ so-called position embeddings. For each absolute
position in the input sequence, a separate position embedding pi is learned during
pre-training. For example, when the model operates on sequences of l tokens, l
position embeddings are learned. These position embedding are simply added to
the original token embeddings before the sequence is fed into the first Transformer
block:

xi = ui + pi (2.8)

With this extension, the Transformer model is able to infer the ordering of tokens
in the sequence by the offset in the input vectors corresponding to each distinctive
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position. As described in Section 2.2.1, the resulting embeddings are then trans-
formed by the multi-head self-attention layer of the first Transformer block, yielding
new representations for each token. These are normalized by layer normalization
(L. J. Ba, Kiros, and Hinton 2016) and then fed into a 2-layer, position-wise fully-
connected feed-forward network with an inner Gaussian Error Linear Unit (GELU,
see Hendrycks and Gimpel 2016) activation function:

FFN(x) = GELU(x ·W1 + b1) ·W2 + b2 (2.9)

with W1 ∈ Rd × d·4, b1 ∈ Rd·4, W2 ∈ Rd·4 × d and b2 ∈ Rd. The same transformations
are applied for every token in the sequence, but differ in each Transformer block.
Residual connections are added around the self-attention and fully-connected feed-
forward layers. In addition to this, dropout is also applied after both the self-
attention and feed-forward layer. This process is repeated for each Transformer
Block, projecting the embeddings time and time again:

H0 = X

H j = Transformer-Block(H j−1) for j ∈ (1, ..., n)
(2.10)

with X,H j ∈ Rl × d. X refers to a matrix that contains all input embeddings xi, which
are the sum of the corresponding token and position embeddings (Equation 2.8), for
a sequence of length l.

Since the GP-Transformer is pre-trained on a large English corpus, Radford et al.
apply language modeling after the last Transformer block. As already explained in
Section 2.1, the forward language modeling objective predicts, for each sequence
position, the likelihood of all tokens in the vocabulary to be the next token in
the sequence. This is implemented by computing the dot-product between every
token embedding hi, where hi denotes the corresponding embedding after the final
Transformer block, and the embeddings u j of all tokens in the vocabulary. Then a
softmax is applied row-wise to produce a probability distribution over the vocabulary:

P(t) = softmax(H · ET ) (2.11)

with H := Hn, i.e. the token embeddings of an input sequence after the final
Transformer block. To compare the predicted tokens at each position to the actual
subsequent tokens, the GP-Transformer minimizes a negative log likelihood loss
during pre-training. This loss is summed over all tokens of the context of length l:

LossLM =

l∑
i

−log P(ti | ti−l, ..., ti−1) (2.12)
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Figure 2.5: Full GP-Transformer architecture. The GP-Transformer consists of 12 Transformer
blocks (Figure 2.4). hi (e.g. hcat)) denotes the context-ware embeddings after the final Transformer
Block. During pre-training, a forward language modeling loss is minimized.

In the forward language modeling objective, each token is only allowed to focus on
previous occurring tokens in the input, so the following tokens need to be masked
out when computing the attention weights. This is done by setting the resulting
dot-product scores (Equation 2.2) for all subsequent tokens to −∞, leading to very
small weights after the softmax application. This is also referred to as the masked
multi-head self-attention (Figure 2.4). The complete model architecture is illustrated
in Figure 2.5. Ultimately, the GP-Transformer learns to produce context-aware
embeddings for the input tokens by pre-training it on the language modeling objective.
These context-aware embeddings are also denoted as Transformer embeddings from
now on.

2.2.3 Byte Pair Encoding

Traditional word embeddings like Word2Vec or GloVe encode each word of a pre-
defined vocabulary independently. However, depending on the language, vocabulary
sizes range from hundreds of thousands to even millions of words. For example,
the vocabulary of everyday German language is estimated to contain up to 500.000
words (Duden 2017). When technical terms are also considered, this number easily
grows to several million words. Because of that, machine learning developers

RheinMain University of Applied Sciences Computer Science (M.Sc.)



Relation Extraction with Attention-based Transfer Learning 21

face a tough decision when training word embeddings: To either only embed the
most frequent words of a given language and map all other words to an unknown
symbol, or to make the vocabulary as large as possible, therefore increasing the
computational overhead and training duration. Especially in subword-rich languages
like German, it is impossible to consider every possible word. Likewise mapping all
out-of-vocabulary words to a single unknown symbol can lead to false predictions
dependent on the target task.

Sennrich, Haddow, and Birch (2015) explored a new way of embedding out-of-
vocabulary words by adapting the so-called byte pair encoding (BPE, see Gage 1994).
Byte pair encoding is also employed in the GP-Transformer for vocabulary creation
and to subsequently pre-process the input data. Originally, byte pair encoding is used
for data compression by iteratively replacing the most frequent byte pair with a byte
that is not part of the data. Similar to this, byte pair encoding for natural language
processing iteratively replaces the most frequent consecutive symbols, starting with
single characters, into a new symbol. So when starting with the sequence “ab dc
ab” the symbols a and b are merged in the first iteration of the algorithm into a new
symbol ab. This process is repeated till no symbols are left to be replaced, or a fixed
vocabulary size V is reached. The resulting n-grams (n-gram denoting a contiguous
sequence of n characters) then form the vocabulary and are usually embedded in
the same way as vocabularies that consist of individual words. Ultimately, byte
pair encoding leads to vocabularies that contain n-grams of flexible lengths, where
frequent n-grams are merge more often and become longer. Common words therefore
appear in the vocabulary as a single n-gram, while rare words are split into multiple
n-grams.

To further illustrate the process, let us consider a set containing the three words
S={house*, mouse*, couch*}. Here, the token * marks the end of a word and is
not part of the vocabulary. In the following example, the words should be byte pair
encoded with five merge operations. In the beginning, the vocabulary consists only
of the single characters that occur in S, so Vinit = {c, e, h, m, o, s, u}. Then, the
algorithm proceeds by merging the symbol pairs that occur most often into a single
symbol:

Step 1 o u→ ou {h ou s e *, m ou s e *, c ou c h *} (3 occurrences)
Step 2 s e→ se {h ou se *, m ou se *, c ou c h *} (2 occurrences)
Step 3 ou se→ ouse {h ouse *, m ouse *, c ou c h *} (2 occurrences)
Step 4 h ouse *→ house * {house *, m ouse, c ou c h *} (1 occurrence)
Step 5 house *→ house* {house*, m ouse, c ou c h *} (1 occurrence)
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After five merge operations, the final vocabulary isV f inal = {c, e, h, m, o, s, u, ou,
se, ouse, house, house* }. Note that in case multiple pairs have the same frequency
(as in step 2 for “s e” and “ou s”) it is an arbitrary decision which one to merge
first. In the two most extreme cases, zero merge operations and a high number of
merge operations, the vocabulary either consists of single characters only, or single
characters combined with every dictionary word and previously merged n-grams.

After the creation of a byte pair vocabulary, token sequences (e.g. sentences) can be
encoded into n-grams of the vocabulary. To do so, tokens (words) are first split into
single characters. The learned operations are iteratively applied to merge characters
into larger n-grams. In the above example, characters “o u” (step 1) are first merged,
then characters “s e” (step 2) and so on. The process repeats till all learned operations
have been applied and no n-grams are left to be merged.

By using byte pair encoding for the vocabulary creation, machine learning models
such as the GP-Transformer are able to create representations of rare or unknown
words by composing them based on their sub-words that are contained in the vocabu-
lary. This is especially useful for languages such as German, where the composition
of words is an integral component of the language: Even if a word like “Fahrkarte-
nautomat” (travel ticket machine) is not part of the vocabulary, its meaning could
possibly be inferred by utilizing the embeddings of “fahr”, “karte” and “automat”.
This property makes token embeddings based on byte pair encoding, like the ones
generated by the GP-Transformer, a good choice for applications that operate on
domain specific vocabulary like company names or machine labels. Furthermore,
models operating on byte pair encoded tokens are more robust to misspelled words,
which would otherwise – in the case of typical word-embeddings – be mapped to an
unknown token. Sennrich, Haddow, and Birch (2015) show that models that operate
on byte pair encoded inputs outperform the baseline models on different machine
translation tasks, especially for the translation of rare words.

2.3 The German GP-Transformer

The original English GP-Transformer was pre-trained by Radford et al. (2018) on
the large English BooksCorpus (Zhu et al. 2015), which contains more than 7.000
unpublished books from different genres. By fine-tuning the model on a variety of
target tasks, they achieved impressive results and outperformed the state-of-the-art
in most cases. However, since the GP-Transformer is pre-trained on a purely English
corpus, it is not possible to employ it for other languages with different vocabularies
and syntax. In this work, the GP-Transformer is pre-trained on German language,
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Corpus #Documents #Sentences #Tokens #BPE-Tokens
Wikipedia 2.055.300 49.237.266 978.820.539 1.185.976.120
Gutenberg 9345 25.937.791 616.639.208 697.738.025
FR 139.715 2.718.540 49.607.408 63.977.785

Total 2.204.360 77.893.597 1.645.067.155 1.947.691.930

Table 2.1: Statistics of the German corpora which the German GP-Transformer language model is
pre-trained on. In total, the corpus consists of more than 1.6 billion tokens and more than 1.9 billion
byte pair encoded tokens (see Section 2.3.1 for the creation of the German BPE vocabulary).

in order to be used for German joint entity and relation extraction (Chapter 6). The
pre-training is implemented in Python1 and uses the PyTorch2 version of the GP-
Transformer model by Hugging Face (2018). Note that the original OpenAI version
(2018) was developed for TensorFlow3 instead.

The German GP-Transformer is pre-trained on a combination of the German Wikipedia4

corpus, the Project Gutenberg5 corpus and the Frankfurter Rundschau corpus. The
German Wikipedia dump was downloaded in July 2018 and includes over 2 million
documents. The Project Gutenberg corpus contains over 58.000 free e-books in
different languages, including German, from which 9345 documents are used in
this work. Finally, the Frankfurter Rundschau corpus, a German news magazine, is
composed of 139.715 news articles. Table 2.1 displays some statistics for each of the
three corpora, including the sentence, token (e.g. words and punctuation marks) and
final BPE token count (the creation of the German BPE vocabulary is described in
Section 2.3.1). The German Wikipedia corpus is the largest of the three and contains
nearly one billion tokens, followed by the Gutenberg corpus with more than 600
million tokens. Note that Gutenberg, while containing significantly less documents
than the German Wikipedia dump, contains larger documents with 2775 sentences on
average, compared to 23 sentences in Wikipedia. The smallest of the three corpora,
Frankfurter Rundschau, contains roughly 50 million tokens and also features the
fewest sentences per document (19 on average).

Besides size, the type of content differs between the corpora, with Project Gutenberg
being the most distinct of the three. Wikipedia documents are very similar in structure
and provide information about all kinds of topics, while the Frankfurter Rundschau
news articles report current affairs. Project Gutenberg on the other hand contains

1https://www.python.org/
2https://pytorch.org/
3https://www.tensorflow.org/
4https://de.wikipedia.org
5https://www.gutenberg.org/
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German Wikipedia Bad Kreuznach ist eine Kurstadt und der Sitz der Kreisverwal-
tung des Landkreises Bad Kreuznach in Rheinland-Pfalz. Als Mittelzentrum mit Teil-
funktionen eines Oberzentrums ist sie administratives, kulturelles und wirtschaftliches
Zentrum einer Region mit mehr als 150.000 Einwohnern. Bad Kreuznach ist Sitz der
Verbandsgemeinde Bad Kreuznach, gehört ihr als große kreisangehörige Stadt...

Project Gutenberg “Schön brav sein, Wotan, und sitzenbleiben!” sagte der gutgek-
leidete junge Mann und sah scheu nach den Vorübergehenden, ob sie etwa Verdacht
schöpften. Wer kümmert sich drum, wenn einem Hund befohlen wird, daß er sich nicht
rühren soll? – Der Neufundländer blickte seinen Herrn aus den restlos gutmütigen
Augen traurig an, bettelte noch ein wenig mit der Pfote, fügte sich aber...

Frankfurter Rundschau PASSAU, 3. Juli (ap). An einer Demonstration gegen
den geplanten weiteren Ausbau der Donau auf der Strecke zwischen Straubing und
Vilshofen in Niederbayern haben sich am Wochenende in Passau etwa 1000 Menschen
beteiligt. Sie kamen mit Traktoren und Fahrrädern zu der Kundgebung; der Vorsitzende
des Bundes Naturschutz, Hubert Weinzierl, nannte den Ausbau des Flusses...

Table 2.2: Text excerpts of each of the three corpora.

mostly literature, including novels, poets or theatre plays (e.g. the German translation
of Shakespear’s Hamlet). Table 2.2 contains text excerpts of each corpus.

The PreTrainer is developed in Python and is divided into three main components:

1. Corpora preprocessing and subsequent generation of a byte pair vocabulary.

2. Encoding of all documents and storage in a data structure for efficient access.

3. Actual training of the language model, including different kinds of evaluation.

Corpora

er – 0
en – 1
ie – 5
esch – 194
*wo – 338
*Hand – 670

*Film – 1138
schied – 1592
wohner – 1968
stelle – 2720
*Energie –4659

...

Corpora

Byte Pair 
Vocabulary Creation Corpora Encoding

Document 1
[254, 501, 2356, 12, 5, …]

Document 2
[3, 15061, 723, 67, 103, ...]

...
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Encoded
Corpora

store

Vocabulary

store

Figure 2.6: The three main components of the PreTrainer.
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With the PreTrainer, it is possible to train a language model in any language by a
command line interface. This includes all necessary steps, from the creation of a
byte pair vocabulary, to corpora encoding and training. The main components of the
PreTrainer and its utilization for German language model pre-training are described
in this chapter.

2.3.1 Pre-Processing and Byte Pair Vocabulary Creation

To later transform the corpora text into common byte pair encoded n-grams, a German
byte pair vocabulary must be created first. To do so, Google’s SentencePiece6 Python
library is used in this work. SentencePiece is a language independent library for
BPE vocabulary creation and subsequent encoding of sentences. For vocabulary
generation, it expects a text file with one sentence per line as input. In a first step,
the documents of each corpus are merged together and divided into single sentences
by the NLP-Toolkit spacy7. Some documents, especially from Wikipedia, contain
many characters that are not common in German, for example Chinese translations.
According to a rough estimate, those characters accounted for over 20% of the final
vocabulary. To avoid that, a whitelist of 476 common characters8) is used and any
sentences are removed that contain characters not occurring in the list. The byte pair
vocabulary was then created with the remaining sentences (about 60 million).

n-gram ID
te 17
*hell 5057
*Hauptsache 18187
ietung 29810
ignale 32441

Table 2.3: N-gram examples.

Contrary to the English GP-Transformer, no lower-
casing was applied to the text: Nouns and named
entities usually start with a capital letter in German,
so this information may be useful for joint entity
and relation extraction to discriminate between verbs,
which can hint at certain relations, and the entities be-
tween the relation exists. In contrast to the byte pair
encoding that is used in the English GP-Transformer
(described in Section 2.2.3), SentencePiece encodes
the start of a word instead of the end. To achieve this,

every whitespace character is replaced with a special symbol (visualized by a * in
Table 2.3), and later merged with the subsequent token, if the respective n-gram
occurs often enough. For the German GP-Transformer, the final vocabulary size V
(including single characters) was set to 40k. SentencePiece assigns every n-gram
of the vocabulary a unique ID (see Table 2.3). This ID is later used to retrieve the
corresponding token embeddings.

6https://github.com/google/sentencepiece
7https://spacy.io/
8The single characters contained in the English BPE vocabulary employed in OpenAI (2018).
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2.3.2 Corpus Encoding and Storage

Due to the large corpus size, the byte pair encoding of all documents demands a lot of
time. Therefore, an on-the-fly encoding during pre-training would needlessly waste
precious computing resources and time. Instead, each corpus is byte pair encoded
before pre-training and saved in a HDF59 file. HDF5 is a hierarchical data format
for storing large amounts of d-dimensional data. With the Python implementation
PyTables10, NumPy11 arrays can be directly saved in and read from a HDF5 file.

In the encoding step, each corpus (German Wikipedia, Project Gutenberg and Frank-
furter Rundschau) is byte pair encoded and stored in a separate HDF5 file. For
every document in the corpus, a row with meta-information (document ID and token
count) and a reference to the encoding NumPy array is created in the HDF5 file. The
encoding array contains the n-gram IDs of the tokenized document (see Figure 2.7).
To speed things up, a pool of processes reads documents from a queue and byte pair
encodes them, while the main process writes the encoded documents to the HDF5
file. Figure 2.7 shows how an example sentence is split into common n-grams and
converted into a sequence of vocabulary token IDs.

Bad Kreuznach ist eine Kurstadt und der Sitz der Kreisverwaltung.

(*Bad, *Kreuz, nach, *ist, *eine, *Kur, stadt, *und, *der, *Sitz, *der, *Kreis, verwaltung, .)

(3038, 2727, 4372, 134, 157, 2127, 1138, 27, 25, 2289, 25, 1848, 5711, 39802)

Split into BPE 
tokens

Map to 
vocabulary ID

Figure 2.7: Byte pair tokenization of an example sentence. Depicted is the actual tokenization
performed by SentencePiece using the German BPE vocabulary (Section 2.3.1). The input sentence
is first split into common BPE n-grams and then mapped to vocabulary IDs. During corpus encoding,
each document is byte pair encoded and saved in a HDF5 file.

9https://www.hdfgroup.org/
10https://www.pytables.org
11http://www.numpy.org/
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2.3.3 Language Model Training

After corpus encoding, the language modeling pre-training of the GP-Transformer
can be conducted. This section describes the sampling of training token sequences
as well as the training procedure, efficiency adjustments and the hyperparameters
that where used during training.

Input Data

Language models, such as the GP-Transformer, are usually trained on batches of
contiguous token sequences, commonly referred to as the context window, or just
context. Let C = {D1,D2, ...,Dz} denote the set of z byte pair encoded documents that
the model is trained on and si the BPE token count of a document Di. A document
with si tokens contains si − l + 1 distinct contiguous sequences, where l denotes the
context length and si >= l. The PreTrainer runs the training procedure for m epochs,
with one epoch containing k =

∑z
i=1 vi samples of vi = b si

l c random contiguous
sequences per document. In other words, k is the quantity of non-overlapping context
windows across all documents. Note that the contiguous sequences are still randomly
sampled, i.e. they begin at random offsets in the document.

In the beginning of pre-training a list of samples, which contain the corpus ID and
the encoding reference for a particular document, is created, with vi of such samples
added to the list for each document Di. Optionally, documents that contain fewer
tokens than l are removed, otherwise vi is set to 1 when si < l. In this case, the
corresponding samples are later padded to the size of the context window. Next,
random documents are removed from this list and put in a separate validation set.
The validation set is later used to periodically compute the language modeling loss
on sequences which were not part of the training data, and to generate text for
visualization and evaluation purposes. The corpus and document IDs that are used
for the training and validation set respectively are stored in CSV files for inspection
and in case the training must be continued later on.

Training Procedure

The list of samples is shuffled in every epoch. During training, a separate producer
process consumes the list, reads the encoding array from the corresponding HDF5
file for each sample and extracts a random contiguous sequence of length l from it.
In case the size of the document is lower than l, the sequence starts at the beginning
and is padded to the size of the context window by appending the special Unknown
token, which is also used for real unknown tokens12. Otherwise the context window

12Since the padding tokens are always masked and no gradient is computed based on the padding, this
introduces no problems regarding the embedding of real unknown tokens.
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Figure 2.8: Illustration of the training process. A separate process (Slice-Producer) creates slices of
n token sequences of the context size l (left). These are put into a multiprocessing queue and read in
the training process (center). Here, batches of b samples are created and fed into the GP-Transformer
(right). For every but the last token (since it cannot be compared to a subsequent token), the probability
distribution that depicts the probability of each vocabulary token to be the subsequent token of the
sequence is computed. The forward language modeling loss is computed as described in Section 2.2.2
and the model’s weights are updated by stochastic gradient descent (SGD). Note that the right side
(the model) is analogous to Figure 2.5.

is always a subsequence of the document. The resulting samples are packed together
into a sample slice W ∈ Rn ×l 2 tensor, with n referring to the slice size. Besides
the n-gram IDs, W contains the embedding matrix indices that correspond to the
position embeddings of each token (see Section 2.2.2). In the implementation used
in this work, the position embeddings are placed in the same embedding matrix E
as the token embeddings. With the vocabulary size V (40k in case of the German
GP-Transformer), the position embeddings correspond to the vectors V to V + l in
the embedding matrix E ∈ RV+l × d (with d again denoting word embedding size).
Furthermore, a separate matrix M ∈ {0, 1}n × l is created, which is later used to mask
padding tokens in the language modeling loss calculation. The producer then writes
each slice into the queue, while the main training procedure reads from it and creates
random batches of size b from the slice. Note that the creation of slices is just a
design decision and not necessarily required: By adjusting the slice size n, with
n = a · b where a ∈ N, one can control the quantity of queue read/writes (with
n = b leading to a batch-wise read/write). Next, the batch of contiguous BPE token
sequences is fed into the GP-Transformer and the forward language modeling loss is
computed as described in Section 2.2.2. The models weight’s are then updated by
stochastic gradient descent (SGD). The whole process is illustrated in Figure 2.8.
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Adaption and Efficiency

Because the pre-trained English GP-Transformer was indented to be used in a transfer
learning setting, only the code that is necessary to fine-tune the model on a new
task was released by OpenAI. In order to replicate the pre-training on a German
text corpus, several adjustments had to be made to the model. First, since language
modeling is used as an auxiliary objective during fine-tuning, the language modeling
loss was separated from the classification loss calculation. Second, Radford et al.
(2018) trained their model on a batch size of 64, however, due to less available
resources this was not possible for the German GP-Transformer. With the purpose
of mimicking the English pre-training, the model was tuned to allow for a higher
effective batch size by employing an optimized tensor GPU distribution and gradient
accumulation: In order to distribute a batch onto available CUDA devices, the model
wrapper DataParallel, which splits the model’s input along the batch dimension, is
commonly utilized when working with PyTorch. But DataParallel has an important
drawback: After the forward pass is conducted on each GPU in parallel, the outputs
are gathered on a single GPU in order to compute the gradients based on the loss
(Wolf 2018). This leads to a single graphic card doing the additional work of loss
and gradient computation, requiring more memory than the other cards and slowing
down the training process. Instead, the German GP-Transformer uses a different
DataParallel implementation (Wolf 2018), which solves the problem by providing a
distribution wrapper for the loss criterion. With this modification, the forward pass
as well as the loss and gradient computation is executed on the available graphic
cards in parallel. According to a rough estimate, this resulted in about 40% training
speed-up compared to the original PyTorch implementation. In addition to this and
due to restricted memory space, gradients where accumulated for multiple iterations
and then back propagated. With this, the model can effectively be trained on large
batches that do not fit on the available GPUs.

Hardware and Hyperparameters

The pre-training was conducted on eight graphic cards in parallel, two P600 cards
with 24 GB memory each and six Nvidia GTX 1080 TI with 11 GB memory. In
a multi GPU setup, the model must be loaded onto every graphic card in order to
compute the forward pass independently. In this case, the six GTX 1080 GPUs
are the limiting factor, because they have less than 50% memory space compared
to the P600 GPUs. Since the GTX 1080 GPUs do not have a sufficient amount of
memory, the batch size b was set to 32 instead of 64. With the purpose of adopting
the hyperparameters of the English GP-Transformer, gradients were accumulated
for every two batches in the training phase and then back propagated, effectively
increasing the batch size to 64. Other hyperparameters were also adopted from
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the original GP-Transformer: The model contains 12 Transformer blocks and 12
attention heads per block. The embedding size was set to 768. The model weights are
updated by an Adam Optimizer (Kingma and J. Ba 2014) with a maximum learning
rate of 2.5 · 10−4, which is increased over the first 2000 updates and then annealed to
0 following a cosine schedule. The context size l is set to 512 and dropout is applied
throughout the model with a rate of 0.1. For further details, see Radford et al. (2018).
In order to evaluate the model on a separate validation set, 0.1% of the documents
of each corpus where put aside (140 documents for Frankfurter Rundschau, 10
documents for Project gutenberg and 2055 German Wikipedia documents). The
sample slice size n was set to a relatively small value to reduce memory usage: In
the final training run to 6400 and therefore 200 batches per slice. The German GP-
Transformer was scheduled to run for 30 epochs (roughly 30 days). However, due
to time restrictions, the training procedure was aborted after 22 epochs (1.510.600
training steps / iterations).

2.3.4 Language Model Evaluation

The German GP-Transformer was evaluated throughout the training process. The
PreTrainer saves the model parameters at least every epoch and logs the training and
validation loss redundantly to TensorBoard, a visualization tool of TensorFlow, and
separate CSV files. The Python library tensorboardX13 is used to log data into a file
which can be read and interpreted by TensorBoard. For insights and reproducibility,
the configuration (including hyperparameters) and the current Python code base14 is
also saved on disk for each pre-training run. Figure 2.9 shows the language modeling
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Figure 2.9: Trainings loss and validation loss of the final pre-training run.

loss for the training (left) and validation set (right). The training loss is averaged
13https://github.com/lanpa/tensorboardX
14only .py files
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over the last processed batch (of effective batch size 64 by gradient accumulation,
see Section 2.3.3) while the validation loss is averaged over 512 random samples of
the validation set. Note that both losses are very similar up to the end of training,
indicating little to no overfitting on the validation set. As visible in the figure, both
losses still decrease almost linearly, so there is probably room for improvement by
training the language model for a longer duration.

Since language models inherently learn the syntax and semantics of language, they
are widely used for text generation. For visualization purposes of the model’s learning
progress, the PreTrainer periodically generates text and stores it in TensorBoard and
on disk. Text is generated by starting with a predetermined start token, which is fed
into the GP-Transformer. All other values of the context are set to the padding token.
Then the second token is determined by a sampling strategy based on the language
model logits and concatenated with the start token, padded, and again fed into the
model. This process is repeated till a predefined maximum text length is reached
(Figure 2.10). The PreTrainer implements three different sampling strategies:

1. text-max Use the maximum value of LM logits over all vocabulary tokens as
the next token.

2. text-softmax Sample next token from the softmax distribution over LM logits.

3. text-gumbel-softmax Sample next token from the gumbel softmax distribution
over the LM logits.

The

cat

sat

on

The

catThe

satcatThe ...

predict

sample

Figure 2.10: Text generation is conducted by feeding a start token (here “The”) into the GP-
Transformer and by sampling the following token based on the language model logits. This token is
then concatenated with the start token and again fed into the model. The process is repeated till a
predefined sequence length is reached.

The gumbel softmax, introduced by Jang, Gu, and Poole (2017), is used in this
work to add additional noise to text generation by adding samples from the Gumbel
distribution during the softmax calculation. The so-called temperature parameter τ
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was set to 1. The start token is either set to “.”, forcing the model to begin with a
new sentence (at least in most cases), or by sampling a random beginning from the
validation documents. Table 2.4 shows how the quality of text generation progresses

step 0 WASHINGTON, 9. Mai (afp). stands Basen verteidigteführungsmöglichellos
Fleiß sum bewachen Andre solcher Vaterland schulüchtige Must räumlichen Linken
güt Mottopreuß Inkzykluseite...

step 24.000 WASHINGTON, 9. Mai (afp). Zwei verohrte Pflanzen , so die Inselloge
, werden darin wohnbar sein. Das war klar. Die Sicherung im Park und die Hilfe von
Feldpflanzen in Freiburg in der Schweiz und Münster , berichtet...

step 628.000 WASHINGTON, 9. Mai (afp). Das US - Verteidigungsministerium ist
am Wochenende bemüht , von der Straße abzuspringen , um einen spektakulären
Bustransfer der US - Armee in die zweite Heimat einzufristen.

step 1.480.000 WASHINGTON, 9. Mai (afp). US - Präsident Bill Clinton hat vor
einer fünfjährigen weltpolitischen Demokratisierung von 16 Milliarden Dollar für
Entwicklungspolitik wie für die Förderung des ökonomischen und kulturellen...

Table 2.4: Text generation over the training progress. The underlined text was fed into the model
as the beginning, forcing the model to continue the text thereafter. Generated by softmax sampling.
Note that the pre-training was conducted up to 22 epochs or 1.510.600 training iterations.

over the training duration. Starting with the initial and untrained GP-Transformer
model, subsequent tokens are just guessed at random. At iteration 24.000, the model
gets better at creating grammatically well-formed sentences but the continuation
does not fit the news article beginning “WASHINGTON, 9. Mai (afp).”. In later
steps, the model adopts the style of news articles and even tends to continue the
beginning in semantically plausible ways.

Table 2.5 contains several text generation examples. In the text-max setting, the
model was frequently observed to repeat the generated text over and over again.
Text repetition also occurred occasionally when the two other sampling strategies,
text-softmax and text-gumbel-softmax, where used, but to a lesser extent. By training
the language model on multiple, partly highly distinctive textual sources, it learns
to adapt to different styles of writing: In the second example, the generated text
resembles a dialogue sequence typical to literature, probably mimicking text from
the Project Gutenberg corpus. The third example on the other hand resembles the
style of factual writing often found in German Wikipedia articles.

Remarkably advanced is the capability of the model to semantically connect to pre-
vious sentences, in this case by referencing the fictional discipline of Vacca Ramirez
(he is a catholic bishop in reality), walking, in every sentence. By also continuing
the year dates in a plausible way, the produced text is almost indistinguishable from
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(1) text-max “Ich habe mich nicht getäuscht”, sagte er, “ich bin der Sohn des Königs
von Frankreich, und ich bin der Sohn des Königs von Frankreich, und ich bin der Sohn
des Königs von Frankreich, und ich bin der Sohn des Königs von Frankreich, und ich
bin der Sohn des Königs von Frankreich, und ich bin der Sohn des Königs...”

(2) text-gumbel-softmax “So heiße doch mal Juniinchen , ” rief Hedwig böse. “Mein
liederliches Gesichtchen ist wieder so besoffen wie früher”, fügte sie heiser hinzu.

“Büchse hat ihm ’nen Silberpinsel mitgebracht.” Es sprang ein lärmend Wiehern
um das Mädchen ,eine Erregung. “Was bist du für eine reine Tugend?” sagte Else.

“Minze!” rief Albrecht. “Dein Mund ist dann noch mit Wasser angefüllt...”

(3) text-softmax-completion Vacca Ramírez (Misael* 5. November 1986 in San Car-
los) ist ein moldawischer Geher. Bei den Jugendweltmeisterschaften 2006 wurde
er Fünfter über dieselbe Distanz. Ein Jahr später nahm er bei den Leichtathletik-
Weltmeisterschaften 2007 in Osaka teil und wurde Achter über 5000m. 2008 wurde er
erstmals nationaler Meister im 20km Gehen. Eine weitere Silbermedaille errang er
2009 im 20km Gehen , jeweils auf der Kurzbahn.

Table 2.5: Examples of text generation. In the text-softmax-completion setting, the underlined
sequence marks the predefined beginning.

human written text. Note however, that these are hand-picked examples – the quality
of the produced text, while tending to improve with each epoch, varies even near
the end of training. As always, the well-known approach of more compute, data
and longer training would probably lead to even better results. More examples of
generated text can be found in Appendix A.

2.4 Giving Insights: Clustering of Embeddings

Machine learning models and especially neural networks are often described as a
black box: A specific input leads to a specific output, but the internals of the model’s
decision are difficult to grasp. To be able to better understand how neural networks
come to their decisions, several attempts have been made in various domains: From
visualizing the focus point and captured features in image classification (Zeiler
and Fergus 2013) to the illustration of attention weights in machine translation
(Tang, Sennrich, and Nivre 2018). To give insights about the semantic relations
that a language model learned on basis of unstructured text, word embeddings are
frequently reduced in dimensionality or partionized by employing clustering methods
like the well-known K-Means algorithm. Compared to using traditional fixed word
embeddings like Word2Vec or GloVe, more complex interactions between words
and additional context sensitive information can be utilized by transferring whole
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pre-trained models like the GP-Transformer to a new domain or task, as described
in Section 2.1. In the GP-Transformer, word representations in higher layers are a
function of previous words and the word itself. This is intended to produce context-
aware word embeddings that include information about the specific preceding context.
In this work, word embeddings produced by the English and German GP-Transformer
are clustered and aligned with the intention of validating this assumption. This
section describes how the Transformer embeddings are sampled and clustered based
on the K-Medoids (Kaufmann and Rousseeuw 1987) algorithm. It also includes
several examples of clusters that underline the model’s capability to create context-
aware word embeddings.

2.4.1 Sampling of Embeddings

In order to illustrate how the embeddings change from layer to layer, the embeddings
that correspond to each token are captured in all Transformer blocks after the position-
wise fully-connected layer (see Figure 2.5). Because clustering is executed on a large
number of embeddings, the sampling step was decoupled from the actual clustering:
By sampling the embeddings in advance and storing them on disk, clustering can
be performed with different settings later on, without requiring a costly inference
step each time. Embeddings are sampled in four essential steps till a maximum
predefined embedding count z is exceeded:

1. Choose a random, not yet processed document.

2. Split the document into n sentences with spaCy and transform the sentences ac-
cording to Section 2.3.3 into a matrix W ∈ Rn × l × 2 (l refers to a predetermined
context length).

3. Feed batches of sentences into the model. Record all Transformer block
activations for each token per layer.

4. Sample a maximum amount of j random byte pair encoded token embeddings
per sentence (all embeddings if j >= sentence length), and store them per layer
alongside the corresponding BPE token IDs.

The resulting embeddings are stored on disk per corpus/document in a hierarchal
tar file. In this work, embeddings were recorded for the English and the German
Wikipedia corpus, with the pre-trained model by OpenAI to record embeddings
for the English corpus, and the German GP-Transformer for the German corpus
respectively. One million embeddings per Transformer block were recorded for both
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text corpora and the maximum sentence embedding count j was set to 100. Note that
the same BPE token is potentially sampled multiple times in different contexts, since
the token’s embedding is intended do vary between contexts.

2.4.2 Clustering and Assignment

(1)
Initial

(2)
Choose random 

medoids

(3)
Assign 

data points to 
closest medoid

(4)
Choose new 
medoids that 

minimize distances

Figure 2.11: Procedure of the K-Medoids algorithm: Starting with the initial data points, K medoids
are first chosen randomly. Then each data point is assigned to its nearest medoid based on an arbitrary
distance metric. Finally, the data point that minimizes the distance to all other data points of the same
cluster is chosen as the new medoid. Steps 3 and 4 are repeated for a set number of iterations or till
the medoids do not change anymore.

The K-Means algorithm is a simple and frequently used clustering approach. How-
ever, it is designed to minimize the squared euclidean distance between data points
and is therefore inappropriate for other distance functions. Since the GP-Transformer
internally uses the dot product to compare word vectors, it seems natural to cluster
the word embeddings regarding this metric. In contrast to K-Means, the K-Medoids
clustering algorithm (Kaufmann and Rousseeuw 1987) is able to deal with arbitrary
metrics. As well as the K-Means algorithm, it divides the data set into K predefined
clusters. The points that have the minimal distance to all other points in their re-
spective cluster are called medoids and serve as the cluster centers. The algorithm
starts by initializing the medoids randomly and first assigns each data point to its
nearest medoid. It proceeds with minimizing the summed distances between all data
points in a cluster by choosing the data point as the new medoid that minimizes the
distances to the other points of the respective cluster. This process is repeated till
a specific number of iterations is exceeded or the clusters do not change from one
iteration to the next (Figure 2.11).

In this work, the K-Medoids algorithm was implemented from-scratch in Python.
In order to speed-up the clustering procedure on a graphic card, the fast tensor
operations of PyTorch were utilized. Clustering is performed independently for each
Transformer block. The algorithm (see Algorithm 1) start with initializing the K
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Algorithm 1 K-Medoids clustering algorithm. The Pseudocode below resembles the style of
mathematical coding in NumPy and PyTorch. D ∈ Rn × d denotes a matrix of n data points
x ∈ Rd. Sample returns random data points without replacement. Argmin(H, axis = 2)
returns the indices of the minimum value per row of matrix H. Sum(E, axis = 2) returns
the sum over all values per row of matrix E. D[v == j] denotes the selection of data points
assigned to cluster j. The algorithm is run for a total amount of I iterations or till the
medoid’s do not change between iterations.

1: procedure Cluster
2: M ← Sample(D,K) . Sample K medoids from P with M ∈ RK × d

3: while M changed and i < I do
4: H ← D · MT · (−1) . Distances of medoids to all points (H ∈ Rn × K)
5: v← Argmin(H, axis = 2) . Indices of closest medoids (v ∈ Rn)
6: for j = (1, ...,K) do . For each cluster j of size n j, do...
7: C ← D[v == j] . Get points of respective cluster (C ∈ Rn j × d)
8: E ← C ·CT · (−1) . Distances between cluster points (E ∈ Rn j × n j)
9: s← Sum(E, axis = 2) . Sum of distances (s ∈ Rn j)

10: b← Argmin(s) . Index of point that minimizes distances
11: M[ j]← C[b] . Set data point corresponding to index b as new medoid
12: i← i + 1
13: return M

medoids randomly from the set of available data points, the 768-dimensional token
embeddings in this case (line 2). Next, each data point is assigned to its nearest
medoid according to the (negative) dot product metric (lines 4 and 5). As mentioned
before, the dot-product is used in this work to compare the token embeddings, since
it is also used throughout the GP-Transformer to compute the relevance scores in
the attention mechanism (see Section 2.2.1). The algorithm proceeds by computing
the sum of distances between data points in a cluster (line 8 and 9). In line 10 and
11, the data point with the lowest distance to all other points is designated as the
new medoid of the respective cluster. Lines 3-12 are repeated till the medoids do
not change from one iteration to the next or the maximum number of iterations I is
reached. Note that the cluster assignment (especially line 4) and medoid selection
(especially line 9) had to be processed in chunks due to memory restrictions15.

Figure 2.12 displays a simple clustering example with 100 2-dimensional data
points sampled from a normal distribution (µ = 1;σ2 = 1). The data points where
partitioned into K = 5 clusters. Because the points are clustered by the magnitude
of the dot product, they tend to be assigned to the far outmost points. This leads to
clusters of points that expand from the coordinate system’s origin.

15Consider that all embeddings (e.g. 1M) are assigned to a single cluster. Then E ∈ R1.000.000 × 1.000.000 is a
matrix of 32-bit float values consuming 4000 GB memory.
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Figure 2.12: K-Medoids with 100 data points (samples from a normal distribution) and 5 clusters. A
cross marks the medoid of the respective cluster.

The final clustering run on the Transformer embeddings was conducted for 10K
iterations on the embeddings of 100K tokens, which were randomly sampled from
the recorded embeddings. With the intention of tracing single embeddings later on,
the same 100K tokens were used to cluster each Transformer block. The cluster
count K was set to 10K. After the clustering procedure is finished, all embeddings
(1M per block) were assigned to their nearest medoid for each Transformer block.
The resulting clusters are again stored in a tar file on disc.

2.4.3 Inspection of Clusters

To gain insights into which words are grouped together and if the model is able to
dissolve polysemes and homonyms by producing context-aware embeddings, some
of the detected clusters were inspected manually. Usually, in embedding models like
Word2Vec, words do only have one representation independent of their context, so
individual words are grouped together with other vocabulary words when clustering
is performed. The BPE token embeddings produced by the GP-Transformer on the
other hand were obtained in dependence of their context, so the same token can be
assigned to multiple clusters when it was extracted from different sentences.

Table 2.6 contains four clusters with exemplary sentences from the early Transformer
blocks (layers) of the model. Which embedding was clustered in the corresponding
sentence is depicted by the underlined word. The topmost cluster (layer 3, 131 assign-
ments) contains only weekdays, while the middle cluster (second layer) comprises
of more than 200 samples of countries and cities. Fore- and surnames of persons
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Year 794 was a common year starting on Saturday ,march 2, 2013...
The station does not air any news programs on Sunday .

At approximately 2:00 p.m. on Monday 21 October 2013...
...Florida, Georgia, the Rocky Mountains, Mexico , and elsewhere made...

...Damilano (born 6 April 1957 in Scarnafigi, Italy ) is an Italian former...
Poblet Monastery, one of the largest in Spain , is considered similarly...

Both he and Scott won the poetry society...
Richard Lindzen and his wife, Nadine , have two sons

Ann and her eldest brother, Godfrey , thus offered to...
...wrote about Sonic’s lack of speed when walking on foot, which they...
...its street “Calle Uruguay”, where locals stroll during weekend nights...

The bill hall trail is a hiking trail in Grand Canyon...

Table 2.6: Clusters of weekdays (layer 3), countries (layer 2), names (layer 3) and “walk” (layer 4).

reside in the third cluster (layer 3, 308 assignments). Furthermore, the last depicted
cluster contains related words of “walk” (layer 4, 109 assignments).

...south of market (running parallel to , and a full... block south of Market Street)...
...then north on South Clinton Avenue a block later.

...matrix inversion and does not take advantage of the block form.
the minimum-norm solution is given by using the block matrix pseudoinverse...

it is a static DSL IP so a block or ban will not impact...
a week was a very short block in the first place IMO ...

Table 2.7: The illustrated clusters of the word “block” of layer 6 demonstrate the capabilities of
the GP-Transformer to differentiate words based on their context. From top to bottom, the clusters
contain street blocks, mathematical blocks and user blocks.

While these cluster examples are similar to those found for Word2Vec and GloVe
embeddings, other clusters demonstrate the capabilities of the GP-Transformer in
differentiating words based on their context. The word “block” can have different
meanings depending on the particular context it appears in: From blocking a user of
a message board, to a street block or a block in various mathematical terms. Table 2.7
shows three exemplary clusters (layer 6), with each of them representing a distinct
meaning of “block”.

In higher layers, the context-aware word embeddings tend to be distributed over
many clusters and therefore single clusters that contain multiple mentions of the
same word are harder to spot. However, one example can be found in table 2.8 (layer
12): By incorporating previous tokens into the vector representation of the homonym
“bank”, the GP-Transformer produces different embeddings for the financial (bank
as an institution) or geological (riverside) meaning of the term.
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An example of this is Banrisul, the largest bank in the south of Brazil...
...includes the largest commercial bank in Russia, Alfa-Bank...

the largest African development bank shareholder is Nigeria.
...was built for this occasion on the bank of the Volga river

...northwest of Montevideo, and on the east bank of the Río Uruguay across...
Frensham lies on the right bank of the river Wey

Table 2.8: Clusters of the homonym “bank” (layer 12): Financial banks (top) and river banks
(bottom).

The importance of such a distinction for downstream tasks is obvious: The downside
of regular fixed embeddings is that they can hardly encode the multiple, partly
unrelated or even opposite (e.g. “oversight”) senses of words. Yet, models such as
the GP-Transformer are able to assign different embeddings to the same word based
on the context and can therefore provide an appropriate representation to downstream
models.

Figure 2.13 shows in how many clusters the words “make”, “tree”, “think” and
“bank” are placed in the different Transformer blocks. Note that the lowest block,
refers to the initial token embeddings, with only positional information added. The
dotted line in Figure 2.13 illustrates the average cluster count that all tokens of the
vocabulary where placed in.
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Figure 2.13: Cluster counts of the words “make”, “tree”, “think” and “bank” over each Transformer
block (layer). The dotted line is the average cluster count of all vocabulary tokens, which appeared in
the clustered corpus (25.861 of 40.000 tokens).

As visible in the figure, the cluster count tends to increase for each word from
the lower to the higher layers. In average, the cluster count increases from 3.1 in
block 0, to 9 in block 1216. Therefore, it is reasonable to assume that lower blocks

16Note that the average cluster count is lower than the cluster count of the examples due to infrequent words.
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primarily capture the meaning of the embedded token itself, without spending much
attention to the context. In higher blocks, token representations get frequently mixed
up with the representations of other tokens due to the attention mechanism, so the
context information becomes more and more pronounced in higher layers. This is
comparable to findings in large convolutional neural networks, where lower layers
focus on small, local features like edges or corners, while higher layers grasp more
complex concepts, e.g. dog faces (Zeiler and Fergus 2013).

The GP-Transformer, however, has one limitation: Because the model is unidirec-
tional, i.e. only attending to the previous tokens, it cannot bake the representations
of subsequent tokens into an embedding. This behavior is especially bad for tokens
that occur in the beginning of a sentence. Consider the two sentences “The Bank of
Scotland is a commercial and clearing bank based in Edinburgh” and “Bank refers to
a land alongside water”: Because the GP-Transformer does not consider subsequent
tokens, it cannot produce a correct context-aware embedding of the homonym “bank”.
On the other hand, a bidirectional model is able incorporate the full sentence into the
“bank” embedding. Therefore it is save to assume that bidirectional models, such as
ELMo or the bidirectional version of the GP-Transformer, BERT (see Section 2.1),
are able to produce even better embeddings independently of the token positions.

Appendix B contains more examples of clusters, including those produced by the
German GP-Transformer on the German Wikipedia corpus. The findings are similar
to those of the English embeddings and the examples include, among others, clusters
of year dates, fields of work and resolved homonyms like “Steuer”. Note however
that the quality of clusters varies for both languages. For instance, many clusters
only contain occurrences of the same word or sentence. Clustering in general can
have largely different effects based on the choice of parameters, e.g. cluster count,
distance metric or reinitializing of empty clusters, so other results and insights might
be obtained with a different setup.
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Chapter 3

Setup

Whereas pre-trained word embeddings like Word2Vec or GloVe are widely used for
relation extraction, publications that fully transfer an existing, pre-trained, model to
this task are scarce. Radford et al. (2018) obtained impressive results in various NLP
tasks by converting an arbitrary and task-specific input into a token sequence, which
is subsequently processed by the pre-trained GP-Transformer. By fine-tuning the GP-
Transformer on the target task, they outperform other transfer learning approaches
like ELMo, which require complex and task specific down-stream models.

In this work, the GP-Transformer is transferred to the task of relation extraction.
Similar to Radford et al.’s work, the model is employed as an elaborate feature
extractor that yields context-aware token embeddings. By adding simple and shallow
down-stream models, the token stream is converted into a representation which
conversely is processed to solve the three relation extraction subtasks explored in
this work, namely “Relation Classification”, “Few-Shot Relation Classification” and
“Joint Entity and Relation Extraction”. An overview about relation extraction as well
as the two relation extraction datasets used in this work is given in this chapter.

3.1 Relation Extraction Overview

The extraction of semantic relations between entities in unstructured text is a complex
problem that consists of several subtasks: This starts with the detection of named en-
tities and ends with the classification of entity pairs into a set of relation types. Other
methods like named entity disambiguation and coreference resolution might also be
of relevance in practice. In relation extraction, the goal is to extract relation triples
(head, relation, tail), which denote that a specific relation holds between a particular
entity pair. Here the head entity represents the subject of the relation, while the tail
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entity depicts the relation’s object. For example, the relation triple ([Nintendo]head,
Developer, [Super Mario 64]tail) expresses that “Nintendo” developed the game “Su-
per Mario 64”, while ([Donald E. Knuth]head, Occupation, [Computer Scientist]tail)
states that “Donald E. Knuth” works as a “computer scientist”. In natural language,
semantic relations can be expressed in a variety of different manifestations. Take for
example the following sentence:

Douglas Adams︸              ︷︷              ︸
Head Entity

was an author of science-fiction novels who lived in Santa Barbara︸           ︷︷           ︸
Tail Entity

.

Imagine that a system wants to classify the relation of the two entities of this sentence
into one of three different relation: “Occupation”, where a person is occupied at
a specific job, “Residence” where a person lives at a specific location and “Work-
Location”, where a person works in a specific location. While “Occupation” can
easily be excluded based on the entities alone because neither “Douglas Adams” nor
“Santa Barbara” depict a job, the choice between “Residence” and “Work-Location”
is not as simple. While certain entities restrict the choice of applicable relations, the
relation is also dependent on the context surrounding the two corresponding entities.
In this case, “Douglas Adams” and “Santa Barbara” could possibly also belong to
the “Work-Location” relation (“Douglas Adams wrote science-fiction novels in his
home in Santa Barbara.”) based on their types (a person and a location) but the
surrounding context strongly suggests that they are part of a “Residence” relation in
this special case. Furthermore, the order of the two entities in the relation matters: It
plays an important role if the context suggests that “Douglas Adams” lives in “Santa
Barbara” or if “Santa Barbara” lives in “Douglas Adams”. With this, the goal of
relation extraction is usually to not only infer the relation type, but also the direction
of the relation (at least for asymmetrical relations). Additionally, the ambiguity and
multitude means of expression in human language is a core problem for relation
extraction. The example sentence “Douglas Adams was an author of science-fiction
novels who lived in Santa Barbara” can be rephrased in a variety of different ways,
including:

In 1999, Douglas Adams︸              ︷︷              ︸
Head Entity

moved from London to Santa Barbara︸           ︷︷           ︸
Tail Entity

.

Santa Barbara︸           ︷︷           ︸
Tail Entity

was the home of science-fiction author Douglas Adams︸              ︷︷              ︸
Head Entity

.

The English author Douglas Adams︸              ︷︷              ︸
Head Entity

resided in a house in Santa Barbara︸           ︷︷           ︸
Tail Entity

, California.
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Therefore models employed for relation extraction are required to generalize to
unknown entities as well as the variety of ways a particular relation can be expressed
in a sentence. To do that, early relation extraction algorithms required an extensive
amount of linguistic information and were therefore dependent on various NLP
toolkits and hand-crafted features (see Hendrickx et al. 2010). This introduces more
sources of error and makes the acquisition and choice of a suitable feature set a
time-consuming challenge.

In contrast to this, current state-of-the-art models are based on neural networks,
which are able to learn the defining patterns and features that suggest a particular
relation automatically with a set of labeled samples. However, the manual annotation
of samples is an expensive and time-consuming task and the set of available labeled
samples for a target domain hardly cover the various aspects of semantic relations.

To aid generalization, a large variety of models which were used for relation extrac-
tion in the recent years employ pre-trained word embeddings, like those produced
by Word2Vec (see 2.1), as the model’s input (e.g. Miwa and Bansal (2016), Han
et al. (2018a), Zheng et al. (2017)). Because these word representations encode
semantic relatedness by their spatial distance, relations can also be extracted for
samples which contain unknown entities or other words that the model was not
trained on. With reference to the example above, the words “live” and “reside” may
be close to each other in the embedding space because they often occur in similar
contexts, so the model is able to generalize from “live” to “reside”, even if the latter
was not encountered during training. The same goes for new entities, for example
by generalizing from familiar locations like “Santa Barbara” to unseen locations
like “Bad Kreuznach”. In addition to word embeddings, state-of-the art relation
extraction models (e.g. Y. Zhang et al. 2017, L. Wang et al. 2016, Shen and Huang
2016, Gao et al. 2019), which are usually based on recurrent or convolutional neural
networks, also incorporate the attention mechanism, which was described in Section
2.2.1. By the selective weighting of input words, attention enables the extraction of
relations between entities that lie far apart in the corresponding sentence.

In this work, three relation extraction subtasks are explored, namely “Relation
Classification”, “Few-Shot Relation Classification” and “Joint Entity and Relation
Extraction”. In all three tasks the corresponding task-specific model is trained on a
set of annotated sentences. Each sentence is labeled with a relation that is expressed
between two entities of the sentence. Figure 3.1 (bottom) shows three exemplary
relations alongside a set of sentences which are labeled with the corresponding
relation. The three subtasks are outlined in Figure3.1 (top):
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New Relation: Director

Relation: DeveloperRelation: ResidenceRelation: Occupation
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“Arjen Robben is a Dutch footballer.”

“He was the father of 
typographer Matthew Carter.”

“In 2012 Angelique Kerber 
moved to Puszczykowo.”

“Gloria Klein is an American painter 
based in New York City.”

“Terry Pratchett was an English 
author who lived in Broad Chalke.”

“Shaun of the Dead is a horror comedy 
film directed by Edgar Wright.”

“Fight Club is a 1999 drama film 
directed by David Fincher.”

“Twitter publicly launched 
Periscope on March 26, 2015.”

“It is also a track in the 
Konami's Jubeat Ripples series.”

“It is generally attributed 
to the statistician George Box.”

“Kingdom Hearts 3 is PS4 game 
developed by Square Enix.”
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Figure 3.1: Illustration of the three relation extraction subtasks explored in this work: “Relation
classification”, “Few-Shot Relation Classification” and “Joint Entity and Relation Extraction”. A
task-specific model is trained for each of these subtasks on a set of labeled sentences. The core of
these models is formed by the language model pre-trained GP-Transformer (center, blue). In relation
classification, a sample must be assigned to a specific relation type that the model encountered during
training. In contrast to this, few-shot relation classification requires the model to generalize to unseen
relations by providing a few samples (in this example only a single one) for each new class. In joint
entity and relation extraction the target entities are unknown and the model needs to simultaneously
detect both the entities and their relation that is expressed in the sentence.

Relation Classification In relation classification, the two target entities are given
and the model is required to assign a specific relation, which is expressed in the
sentence, to the entity pair. The directionality of the relation must also be inferred.
As common for a classification objective, the model learns the defining patterns of a
relation during training and is then required to generalize to unseen samples of these
relations during inference.

Few-Shot Relation Classification Contrary to relation classification, the few-shot
relation classification objective is to generalize to new relations that were not encoun-
tered during training. While the model is also trained on labeled relation triples that
are expressed in a sentence, it is presented with new relation classes during inference.
For each one of the new relations, only a few examples (shots) are given and the
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model needs to assign one of the new relations to a query based on the provided
examples alone. The relation’s directionality must not be predicted in the few-shot
setting addressed in this work.

Joint Entity and Relation Extraction Whereas the two target entities are given
in (few-shot) relation classification, they are unknown in joint entity and relation
extraction and need to be predicted alongside the relation type and the directionality
of the relation. So when a sentence is presented to the model, it is required to detect
likely entities and their boundaries. A relation is then assigned to an entity pair when
this relation is expressed in the sentence between the two entities.

Each of these subtasks is tackled with task-specific models (center of Figure 3.1).
The GP-Transformer, which was introduced in Section 2, forms the core part of these
models and is fine-tuned on the respective target task. In contrast to the aforemen-
tioned fixed word embeddings, which are frequently utilized in relation extraction,
the pre-trained GP-Transformer is able to detect more complex interactions between
words and produces context-aware embeddings, which may be beneficial for rela-
tion extraction: Take the word “apple” for example, which can express a fruit as
well as a company name dependent on the context. The GP-Transformer learned
how to consider the specific input context during pre-training and therefore the
context-aware “apple” embedding may suggest a specific relation, for example “Oc-
cupation”. Also, as explained before, many state-of-the-art models employ attention
as an additional layer after an recurrent or convolutional neural network. Since the
GP-Transformer is primarily based on attention, it may be well suited for relation
extraction, which is explored in this work. Depending on the dataset, the weights
of the GP-Transformer are either initialized with those of the language modeling
pre-trained English GP-Transformer by OpenAI (Radford et al. 2018) or the German
GP-Transformer (Section 2.3). This is illustrated in Figure 3.1 (center).

3.2 The SemEval Dataset

The most widely used dataset for relation classification is the manually annotated
database from the SemEval-2010 Task 8 challenge (Hendrickx et al. 2010). In this
dataset, entitiy pairs in sentences crawled from the web were assigned to a set of 9
different relation types. According to Hendrickx et al., the types were chosen to cover
a broad number of relation mentions but at the same time offer a minimal semantic
overlap. This resulted in rather abstract semantic relations like “Cause-Effect” and
“Component-Whole”.
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Relation Freq Pos IAA
Cause-Effect (CE) 1331 (12.4%) 91.2% 79.0%

Component-Whole (CW) 1253 (11.7%) 84.3% 70.0%
Entity-Destination (ED) 1137 (10.6%) 80.1% 75.2%

Entity-Origin (EO) 974 (9.1%) 69.2% 58.2%
Product-Producer (PP) 948 (8.8%) 66.3% 84.8%

Member-Collection (MC) 923 (8.6%) 74.7% 68.2%
Message-Topic (MT) 895 (8.4%) 74.4% 72.4%

Content-Container (CC) 732 (6.8%) 59.3% 95.8%
Instrument-Agency (IA) 660 (6.2%) 60.8% 65.0%

Other (O) 1864 (17.4%) N/A N/A

Total 10717 (100%)

Table 3.1: Semantic relations of SemEval-2010 Task 8. Absolute and relative frequency (Freq),
percentage of positive samples in the candidate set (Pos) and inter-annotator agreement (IAA).
Original source: Hendrickx et al. (2010)

The task organizers also added an undirected “Other” class that contains all the
entity pairs that do not fit the 9 relation categories. Because the order of the entities
must be inferred alongside the relation type, this results in 19 classes in total (2 · 9 +

“Other”). The task creators also defined a set of annotation guidelines, for example
to exclude speculative or counterfactural scenarios and to use only common-noun
heads as entities (for exhaustive annotation guidelines see Hendrickx et al. 2010).

Relation Entities
Entity-Destinationa People have been moving back into downtown.

Cause-Effectb The burst has been caused by water hammer pressure.

Instrument-Agencyc A programmer uses a high level language to imple-
ment its algorithms.

Member-Collectiond I was attacked by a flock of pigeons today.

Component-Wholee The oculomotor nerve rests in a cistern within the sinus
roof.

Table 3.2: Example sentences of the SemEval dataset (head red, tail blue)

a“An entity is moving towards a destination” (Hendrickx et al. 2010)
b“An event or object leads to an effect” (Hendrickx et al. 2010)
c“An agent uses an instrument” (Hendrickx et al. 2010)
d“A member forms a nonfunctional part of a collection” (Hendrickx et al. 2010)
e“An object is a component of a larger whole” (Hendrickx et al. 2010)

The annotation process took place in three rounds: In the first round, 1200 sentence
candidates per relation were manually crawled through a pattern-based web search.
These sentences were then annotated by two independent annotators in the second
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round. In the third round, emerged conflicts between the annotations of the two
annotators were resolved or corresponding sentences removed if no consensus was
achieved. This approach yielded 10717 annotated relation mentions in total, dis-
tributed unequally over the 10 relation types. The highest inter-annotator agreement
was reached for “Cause-Effect” (79.0%), and the lowest for “Instrument-Agency”
(65%), which suggests that relation classification is in itself a hard and ambiguous
problem, even for humans.

Some typical example sentences of the SemEval dataset are depicted in Table 3.2:
Each sentence is annotated with the two target entities, their position in the relation
triple (i.e. if an entity is the head or tail of the relation) and the corresponding relation.
Figure 3.2 shows the byte pair encoded sentence lengths and entity lengths (in terms
of byte pairs) of the SemEval dataset. As visible in the figure, the average sentence
length is fairly low with 20.91 BPE tokens. Moreover, most entities comprise of only
a single token (about 83%) and the average entity length is 1.23 BPE tokens.
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Figure 3.2: Byte pair encoded sentence lengths (left) and byte pair encoded entity lengths (right) of
the whole SemEval dataset. The average sentence length is 20.91 BPE tokens and the average entity
length 1.23 BPE tokens.

In total, SemEval comprises of 10.717 annotated relation examples. The dataset
is split into an official training (including 8.000 sentences) and test set (including
2.717 sentences). Since the release of SemEval in 2010, the dataset is used in a wide
variety of publications on the matter of standard relation classification. In this work,
the dataset is is also employed for joint entity and relation extraction.

3.3 The FewRel Dataset

The FewRel dataset (Han et al. 2018a) was originally intended to be used in a few-
shot setting (see Chapter 5), but is also employed for standard relation classification
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and joint entity and relation extraction in this work. It has the following benefits
compared to other relation extraction datasets like SemEval 2010 or the NYT dataset
(Riedel, Yao, and Mccallum 2010): FewRel includes 100 different relation types
with 700 samples each, making it much larger and more diverse compared to the
aforementioned dataset. Second, the dataset was created by aligning the Englisch
Wikipedia Corpus with Wikidata1, which is an open knowledge base containing
structured data. Particularly, Wikidata already stores a large number of entities
and the relations that exist between them in its database. For example, if you type
P740 into the search field of Wikidata, the relation type “Location of Formation”
is returned, which is described as a “location where a group or organization was
formed”. By entering “Q1299”, Wikidata displays several informations regarding
the entity “The Beatles”, an “English rock band”: This includes a list of relations
that exist between “The Beatles” and other entities, for example Liverpool (Q24826)
in the relation “Location of Formation”.

Reasoning Example
Simple Pattern Chris Bohjalian graduated from Amherst College Summa

Cum Laude, where he was a member of the Phi Beta Kappa
Society.

Commonsense Reasoning James Alty obtained a 1st class honours (Physics) at Liv-
erpool University.

Logical Reasoning He was a professor at Reed College, where he taught Steve
Jobs, and replaced Lloyd J. Reynolds as the head of the
calligraphy program.

Coreference Reasoning He and Cesare Borgia were thought to be close friends
since childhood, going on to ac- company one another dur-
ing their studies at the University of Pisa.

Table 3.3: Relation mention examples of “Educated At” (P69), which require different forms of
reasoning. Red indicates head, blue indicates tail entity. Original Source: Han et al. (2018a)

The distant supervision approach for relation extraction (Mintz et al. 2009), which
Han et. al. rely on to build the FewRel dataset, is based on the following assumption:
If two entities in a sentence are connected by a relation in a knowledge base, the
sentence is assumed to indeed express the relation between those entities. While this
assumption is obviously violated in some cases (e.g. “[The Beatles]head frequently
played in The Cavern Club in [Liverpool]tail” does not directly express “Location of
Formation”), it is an established pre-selection step for the creation of relation classi-
fication datasets. To do so, Han et al. extracted entity mentions from Wikipedia by
both using already referenced mentions of Wikidata entities and additional mentions

1https://www.wikidata.org/
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detected by spaCys’s NER tagger. Then, the distant supervision assumption was
applied by linking every entity pair (e1, e2) in a sentence to a Wikidata relation r
in case Wikidata contains the triple (e1, r, e2). Because models might tend to only
consider the entities for classification without paying attention to the surrounding
context if these entities often occur together in a specific relation, only one sample
per entity pair was kept. After that, all relations that contained less than 1000 samples
were removed.

Relation Entities

Specialitya Roberto Crivello (born 14 September 1991) is an Ital-
ian footballer who plays as a left back for Frosinone.

Record Labelb
The recording by American country singer Sonny
James was released by Capitol Records as catalog num-
ber 3602.

Occupationc Benjamin Vermeulen (born 15 July 1957) is a former
Belgian racing cyclist.

Motherd
Damon Elliott was born on march 21, 1973 to Dionne
Warwick and Bill Elliott.

Nominated fore
Sisters Olivia De Havilland and Joan Fontaine were
both nominated for Best Actress in 1942, with Fontaine
winning for “Suspicion”.

Table 3.4: Example sentences of the FewRel dataset. The head entity of the relation is colored in red
and the tail entity in blue.

a“Position or specialism of a player on a team, e.g. Small Forward” (Wikidata)
b“Brand [...] associated with the marketing of subject music recordings and music videos” (Wikidata)
c“Occupation of a person” (Wikidata)
d“Female parent of the subject” (Wikidata)
e“Award nomination received by a person, organisation or creative work” (Wikidata)

From the remaining 122 relations 1000 samples were randomly selected. In a second
step, similar to the SemEval acquisition process, each instance (e1, r, e2) from the
candidate set was given to two annotators, who independently decided if the relation
is correctly expressed in the sentence (see Han et al. 2018a for the full procedure).
At the end, the annotation process yielded a balanced dataset of 100 relations, each
containing 700 samples. Han et. al. argue that the most challenging aspect of their
dataset is the diversity of relation expressions, whereby models require different and
complex forms of reasoning in order to classify a specific sample (see Table 3.3).

Table 3.4 shows some typical samples from the FewRel dataset. Again, each sentence
is labeled with the head and tail entity and the corresponding relation type. Compared
to the rather generic relations of the SemEval dataset, which restrict the entity type
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to a lesser extent, the FewRel dataset contains mostly specific relations that narrow
down the set of participating entities. For example, the relations “Location of
Formation” is restricted to a location as the head entity, e.g. a city or country, while
“Instrument” (P1303, “musical instrument that a person plays”) can only persist
between an instrument and a person.
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Figure 3.3: Byte pair encoded sentence lengths (left) and byte pair encoded entity lengths (right) of
the whole FewRel dataset. On average, FewRel contains longer sentences (30.47 BPE tokens) than
the SemEval dataset (20.91 BPE tokens). The same goes for the byte pair entity length, with 3.24
(FewRel) compared to 1.23 tokens on average.

In comparison with the SemEval dataset, FewRel contains much longer sentences.
This is illustrated in Figure 3.3: The byte pair encoded sentences contain 30.47
(FewRel) versus 20.91 (SemEval) tokens on average. Since longer sentences intro-
duce additional noise, this makes the FewRel dataset more challenging. As illustrated
in the right plot, the entities are also longer compared to the SemEval dataset (3.24
versus 1.23 BPE tokens on average). This makes the dataset especially challenging
for joint entity and relation extraction, which is explored in Section 6, because the
entity boundaries must also be detected in this task.

As mentioned before, FewRel was originally constructed for a few-shot scenario, so
the full dataset is split into a train (74 relation types), validation (16 relation types)
and a hidden, not publicly available, test (20 relation types) set of disjunctive relation
types. In order to exploit the dataset for standard relation classification and joint
entity and relation extraction, the training and validation set were merged, yielding
a dataset of 80 different relations. The dataset is again divided into a training (600
samples per relation) and test dataset (100 samples per relation). This split is denoted
as standard classification split from now on.

German Translation

In order to employ the FewRel dataset for German joint entity and relation extraction,
a small part of the FewRel dataset was translated into German. The five relation types
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“Country of Citizenship”, “Director”, “Instrument”, “Architect” and “Participating
Team” were selected. A set of 40 sentences were randomly chosen for reach relation.
These samples were first automatically translated with Google’s Cloud Translation
API2. Next, the translated sentences were manually reviewed and corrected. After
correction, each sentence was split into tokens with spaCy3. The two entities that
are annotated in the original English FewRel dataset for each sentence were then
manually assigned to the corresponding translated token sequence. Table 3.5 shows
one example for each of the five relations. The German dataset was split into a
training (30 samples per relation) and test dataset (10 samples per relation).

Relation Entities

Country of Citizenshipa
Peter Veselovsk (geboren 11. November 1964) spielte
1992 für die Tschechoslowakei in dem Team, dass die
olympischen Bronzemedaille gewonnen hat.

Directorb
Apurbas Debütfilm ist “Gangster Returns”, der am 27.
November 2015 unter der Regie von Ashiqur Rahman
veröffentlicht wurde.

Instrumentc
Randy Meisner spielte Bass und sang von 1961 bis 1965
mit einer lokalen Band namens The Dynamics.

Architectd

Er leitete den Bau des Hauptquartiers der Bank, des Marine
Trust Building, entworfen von seinem Freund Edward
Brodhead Green (1855-1950), einem bekannten Architek-
ten aus Buffalo.

Participating Teame
Nieto stellte bei der FIFA-Weltmeisterschaft 2002 einen
Rekord auf und teilte in einem Spiel zwischen Deutschland
und Kamerun 14 gelbe und 2 rote Karten aus.

Table 3.5: Example sentence for each relation of the German FewRel dataset (head entity red, tail
entity blue).

a“The object is a country that recognizes the subject as its citizen” (Wikidata)
b“Director(s) of film, TV-series, stageplay, video game or similar” (Wikidata)
c“Musical instrument that a person plays” (Wikidata)
d“Person or architectural firm that designed this building” (Wikidata)
e“[Team] (object) that actively takes/took part in an event or process (subject)” (Wikidata)

2https://cloud.google.com/translate/
3https://spacy.io/
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Chapter 4

Relation Classification

In Chapter 2, the GP-Transformer was shown to learn the syntax and semantics
of human language when pre-trained on a large corpus of unstructured text. By
clustering the Transformer embeddings the model’s capability in producing context-
aware embeddings was confirmed. In this chapter, the knowledge of the pre-trained
GP-Transformer is transferred to one of the key steps of relation extraction: The
assignment of a relation to a pair of entities in a sentence. This task is commonly
evaluated in a multi-way classification setting: Given a sentence s with labeled
entities (e1, e2), the task is to complete the triple (e1, *, e2), i.e. to predict (e1, r, e2),
with a relation r ∈ R that is expressed in the sentence between the target entities. R
refers to a finite set of relations (the classes in the multi-way classification setting)
between which the model decides. Often, the directionality of the relation must
be detected alongside the relation type: Is ([e1]head, r, [e2]tail) or ([e2]head, r, [e1]tail)
expressed in the sentence? As explained in Section 3.1, the first entity is usually
denoted as the head and the second entity as the tail of the relation. Traditionally,
relation classification is tackled by extracting a variety of lexical features from the
target sentence, e.g. WordNet hypernyms, grammatical relations, semantic roles or
Levin classes (see Hendrickx et al. 2010 for example models). These features are
then used to classify the relation. However, this approach requires the utilization of a
large variety of different feature extractors and therefore an expensive and complex
pre-processing pipeline. More recent publications take a different approach and train
a single neural network on multi-way relation classification, getting rid of additional
lexical features altogether. Today, competitive models are usually based on this new
approach and range from recurrent neural networks like LSTMs (e.g. Xu, Mou, et al.
2015) to CNNs (e.g. Zeng et al. 2014a). Current state-of-the-art models combine
RNNs or CNNs with an attention mechanism (e.g. Lee, Seo, and Choi 2019 or L.
Wang et al. 2016) in order to identify the relevance of a word for a specific relation.
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In this work, the pre-trained GP-Transformer, which is solely based on attention,
is applied to the task of relation classification. In experiments on two datasets, the
following questions are particularly addressed:

• How can previously applied methods to indicate the target entities of a sentence,
like position indicators (D. Zhang and D. Wang 2015) and distance embeddings
(Zeng et al. 2014a), be adapted for the GP-Transformer?

• As shown in Section 2.4, the embeddings produced by the GP-Transformer
possess promising properties. How does the pre-trained GP-Transformer
compare to other relation classification models, which usually employ fixed
word embeddings as input?

• Is a comparably expensive fine-tuning of the GP-Transformer necessary or is
a simple fully-connected feed-forward model, which operates on the context-
aware embeddings produced by the pre-trained GP-Transformer, able to achieve
similar results?

4.1 Related Work

This section gives an overview of other models published in the literature for relation
classification. The section focuses on neural networks and is structured by the
most common types: Recurrent neural networks, convolutional neural networks and
models that incorporate or rely on the attention mechanism.

Recurrent/recursive neural networks Yin et al. (2017) compare several baseline
architectures for relation classification, including a recurrent neural network with
either an LSTM- (Hochreiter and Schmidhuber 1997) or GRU-Unit (Cho et al. 2014).
The baseline models do not employ special modifications for relation classification
or pre-trained word embeddings. These are just initialized randomly and refined
during training. The output of the network’s unit at the last time step is then used for
relation classification. Their results suggests, that a simple model without pre-trained
word embeddings is not sufficient for relation classification, and that adjustments
targeted specifically at the relation classification task are required.

D. Zhang and D. Wang (2015) improve upon the baseline model with several modifi-
cations: They apply a bidirectional model with standard RNN units and introduce
special position tokens that indicate the target entities. These entity indicators are
added before and after each entity, resulting in four indicators in total. The rela-
tive positional information to the other words of the sentence can then be obtained
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through the recurrent processing. With these adjustment, the RNN is able to focus
on relevant sections of the input sentence and is less prone to irrelevant noise.

Socher et al. (2012), who were one of the first to use neural networks for relation clas-
sification, introduced a matrix-vector (MV) Tree-RNN which operates on the syntax
tree of a sentence: Each word or phrase is represented by both a matrix (modification
of meaning of combined word/phrase) and a vector (meaning of component). Tree-
RNNs combine words/phrases recursively bottom-up corresponding to the structure
of a binarized constituency parse tree. According to Socher et al. (2012), the model
is capable of capturing “semantic compositionality in a syntactically plausible way”.
For relation classification, Socher et al. employed the MV Tree-RNN only on the
subtree that is spawned by the common ancestor node of the two entities of interest.
According to the paper, this approach achieves a better performance because the
relation type is mostly dependent on the context between the two entities.

Xu, Mou, et al. (2015) state that the shortest dependency path (SDP) between
two entities in a dependency tree captures compactly the information that is most
significant for the relation between these entities. As a consequence, they apply a
LSTM only on the words of the sentence that are contained in the shortest dependency
path. Because the direction of relations in a dependency tree matter, the authors
apply two independent LSTM networks separately on the left and right subpath of
the SDP. To do so, they split the SDP on the common ancestor node of the target
entities. Xu et al. also show how the dropout of word embeddings benefits the
generalization capabilities of a neural network for the relation classification task.

In a follow up paper, Xu, Jia, et al. (2016) improve upon the SDP-LSTM described
above by building deep recurrent neural networks on the two subpaths instead of
single layer LSTMs. They also introduce a novel data augmentation technique that
increases the size of the training set by swapping the two subpaths of the SDP.

Furthermore Ebrahimi and Dou (2015) employ a tree-structured RNN on the shortest
dependency path between two entities. Lastly, Miwa and Bansal (2016) stack
bidirectional tree-structured LSTMs on bidirectional sequential LSTMs in order to
infer the semantic relation between entities.

Convolutional neural networks Zeng et al. (2014a) employ a convolutional neural
network for relation classification and establish a novel way of indicating the target
entities, which subsequently published CNN-based models often rely on: Distance
embeddings1. These features encode the relative distance of each position in the input
sentence to the target entities. In the same way as the regular word embeddings, the

1Commonly denoted as position features. In this work, the term distance embeddings is used to distinguish
them from the standard positional embeddings of the GP-Transformer.
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relative distances are mapped to an embedding vector and adjusted during training.
The final word representations, which serve as the CNN’s input, are then obtained by
concatenating the word embeddings with the two distance embeddings corresponding
to the relative distance to the head and tail entity. Zeng et al. report an increase of
almost 10% macro-F1 by using distance embeddings versus word embeddings alone.

Santos, Xiang, and B. Zhou (2015) add a pair-wise ranking loss to a CNN which is
designed to diminish the negative impact of the noisy “Other ” relation (SemEval
dataset, see Section 3.2) on the classification accuracy. Similar to Zeng et al. (2014a),
they indicate the target entities with distance embeddings. By employing the ranking
loss instead of a regular softmax classifier, they report an improvement of 1.59
macro-F1.

Attention-based models The attention mechanism has recently been also applied
to relation classification: P. Zhou, Shi, et al. (2016) combine a bidirectional LSTM
with an attention function by computing the weighted sum over the LSTM’s output
vectors. They employ the entity indicators introduced by D. Zhang and D. Wang
(2015) and report an improvement in F1 score by adding the attention mechanism.

Y. Zhang et al. (2017) propose position-aware attention, which is specifically de-
signed for relation extraction. The position-aware attention is applied on top of a
regular, unidirectional LSTM and uses learned entity position embeddings in addition
to the LSTM’s output vectors in order to compute the attention scores. They compare
their architecture with some competitive baseline models like Xu, Mou, et al. (2015)
and accomplish the best performance on the TACRED dataset (Y. Zhang et al. 2017).
Moreover, Zhang et. al. demonstrate that a higher robustness for long sentence
lengths can be achieved by incorporating position-aware attention into the model.

Lee, Seo, and Choi (2019) also apply a position-aware attention mechanism on top
of a model that consists of both an self-attention layer (similar to the one applied
in the GP-Transformer) and a bidirectional LSTM network. In contrast to Y. Zhang
et al. (2017), they also incorporate entity types into the attention calculation and
argue that these could provide powerful hints for relation classification.

The model introduced by Shen and Huang (2016) combines a single-layer convolu-
tional neural network with an novel attention network, which operates on word-entity
pairs: By computing the attention score based on the concatenation of word and
entity embeddings, the network is able to weight each word of the input by its
relevance to the target entities. The convolution vector and the two context-vectors
(corresponding to the relevance to the head and tail entity respectively) are then
concatenated and fed into a final fully-connected layer for classification.
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L. Wang et al. (2016) employ a word-entity attention mechanism in a multi-level
CNN. The attention score for each word-entity combination is computed by the inner
product of the corresponding embeddings. In contrast to Shen and Huang (2016),
each word is then weighted by the average of the attention score to the head and
tail entity. Additionally, Wang et al. rely on an attention-based pooling after the
convolutional layer to select only relevant sections for relation classification.

Finally, other Transformer-based models were recently applied to relation classifica-
tion: The TRE (Transformer based Relation Extraction) model by Alt, Hübner, and
Hennig (2019) is closely related to the one employed in this work. Alt et al. also
utilize the GP-Transformer for relation classification (Radford et al. 2018). They
make the model aware of the two target entities by copying them to the start of the
sentence (separated by a special token), followed by the sentence itself. By doing so,
Alt et al. report strong results on the SemEval and TACRED dataset.

Verga, Strubell, and McCallum (2018) employ a Transformer encoder to simultane-
ously classify the relations between all marked entities in a paragraph: The paragraph
is only fed once through the model and entity-pair relation scores are obtained based
on the Transformer embeddings that correspond to an entity mention. They report
state-of-the-art results on a biomedical dataset. In contrast to this work, Verga et al.
do not utilize language modeling pre-training. In a similar approach, H. Wang et al.
(2019) also score all labeled entity mentions simultaneously. However, in contrast
to Verga et al. they rely on the pre-trained bidirectional BERT (Devlin et al. 2018)
model. By encoding the distance of a word to every entity in the self-attention layers,
they achieve the current relation classification state-of-the-art on the SemEval dataset
(see Section 3.2 for dataset description).

4.2 Approach

This work follows the approach employed by Radford et al. (2018) for other NLP
classification tasks: To classify a sentence, special <Start> and <End> tokens are
added to the beginning and end of the input sequence, respectively (see Figure 4.1).
These tokens are added to the vocabulary and adjusted during training. Because
the <End> token is able to attend to all previous words and therefore the whole
input sentence, it represents the sentence’s context. The Transformer embedding that
corresponds to the End token, h<End>, is later used for classification.

In relation classification, it is important to know what the target entities are: Since
several relations can be expressed in a single sentence simultaneously and words
near the entities may be more significant for the expressed relation, state-of-the-art
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Douglas Adams anwas English author<start> <end>Douglas Adams anwas English author<Start> <End>

e
1 e

2

Figure 4.1: Radford et al. fine tune the GP-Transformer by converting an arbitrary input into a
sequence. They also add special tokens at the start and end of the sequence. The vector representation
of the last token, the <End> token, after the final Transformer block is then used for classification. In
this figure, e1 denotes the first entity of the sentence and e2 the second entity.

models encode positional information to the target entities. Take the sentence “A
team of students from Virginia Tech University have created a vehicle that allows
vision impaired drivers to take control of the wheel” for example. Without the
knowledge of the entities, which relation we want to classify, there is no way to infer
if “Product-Producer”2 ([team of students]head, [vehicle]tail) or “Agency-Instrument”3

([drivers]head, [wheel]tail) is the target relation. However, with the knowledge of the
target entities, “drivers” and “wheel”, the model is able to focus on the relevant
section of the input and to infer the correct relation. Two common approaches to
mark the target entities are entity indicators (EI) (D. Zhang and D. Wang 2015) and
distance embeddings (DE) (Zeng et al. 2014a)4. Entity indicators are frequently
employed in recurrent models, while distance embeddings are usually found in
convolutional neural networks. In this work, both approaches are applied to the GP-
Transformer in order do evaluate which method performs better in the self-attention
based model. Additionally, three other methods for entity indication that rely on an
averaging of the final Transformer embeddings are also employed in this work and
are compared to the aforementioned methods.

Method 1: Entity Indicators

Entity indicators (EI) were first proposed by D. Zhang and D. Wang (2015) and
employed in a standard recurrent neural network. By feeding special position
indicators into the network before and after the target entities, they improved the
classification accuracy significantly by about 10% macro-F1. The approach is
adapted for the non-recurrent GP-Transformer by inserting the indicators before
and after the first entity (e1) and second entity (e2) into the sequence. The position
indicators and the <Start> and <End> tokens are then added to the vocabulary and
treated the same way as the BPE tokens. For example, if V = 100 (with V again
denoting the vocabulary size), the vocabulary IDs from 101 to 106 are assigned
to the six special tokens (see Figure 4.2). The embeddings that correspond to the

2“A producer causes a product to exist.” (Hendrickx et al. 2010)
3“An agent uses an instrument.” (Hendrickx et al. 2010)
4These are also commonly denoted as position indicators and position embeddings. Since the GP-

Transformer already employs standard position embeddings, the two approaches are referred to as entity
indicators and distance embeddings in this work
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special tokens are then placed in the same embedding matrix E ∈ RV + lmax + 6 (with
lmax denoting the maximum sentence length in the dataset) as those of the BPE token
and regular position embeddings (see Section 2.2.2).

Adams an English author<e
1
> <End>Douglas was<Start>

101 5 4 82 23 15 50104 90

</e
1
> </e

2
><e

2
>

103 102106105

Byte-Pair Encoding

e
1

e
2

Figure 4.2: Tokens are byte pair encoded and mapped to a vocabulary ID. The special entity
indicators as well as the <Start> and <End> tokens are assigned IDs 101-106, which did not exist in
the vocabulary before. Here e1 denotes the first entity in the sentence and e2 the second entity.

Method 2: Distance Embeddings

Distance embeddings (DE), introduced by Zeng et al. (2014a), encode the relative
distance of each word (or token) in the given sentence to the two entities. So there
exists embeddings (..., q1

−2, q1
−1, q1

0, q1
1, ...) for the relative distances to e1. Likewise

the relative distances to e2 are encoded, resulting in embeddings (..., q2
−2, q2

−1, q2
0, q2

1,
...). This procedure is visualized in Figure 4.3.

Douglas Adams anwas English author<start> <end>Douglas Adams anwas English author<Start> <End>

-1 0 0 1 2 3 4 5

-5’ -4’ -3’ -2’ -1’ 0’ 1’ 2’
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to e
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to e

2
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2

Figure 4.3: Distance embeddings encode the relative distance two the target entities. In this work,
separate distinct embeddings are trained for the relative distance to the first and second entity
independently.

Since the relative distance of each word is computed with respect to both entities and
a single entity is composed of at minimum one token, the size of the set of required
distance embeddings, Q, can be calculated by:

|Q| = (l · 2 − 1) · 2 (4.1)
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for an input sentence of l tokens. As before, the distance embeddings are placed in
the same embedding matrix E as those of the BPE and regular position embeddings
and adjusted during training.

In the original implementation by Zeng et al. the distance embeddings d1
i ,d

2
i for a

specific token ti are concatenated with the corresponding token embedding ui and
fed into the CNN. If ui ∈ Rd and q1

i ,q
2
i ∈ Ra, this approach results in d + 2 · a

dimensional input vectors xi. Since the GP-Transformer is pre-trained and the
dimensionality of the model’s layers is already fixed, distance embeddings cannot
be applied without any adjustment. One obvious adaption is to concatenate the
distance embeddings after the GP-Transformer and before the classifier to the context-
aware embeddings. However, with this approach the additional information gained
by distance embeddings cannot be utilized in the pre-trained Transformer layers.
Another option might be to concatenate the vectors in advance and map them back to
the original embedding space of the Transformer by a simple linear transformation,
but this introduces additional parameters to the model. In this work, the distance
embeddings q1

i ,q
2
i ∈ Rd are instead added to those of the token ui ∈ Rd and position

embeddings pi ∈ Rd before the GP-Transformer:

xi = ui + pi + q1
i + q2

i (4.2)

With this approach, the model may be able to infer the entities and relative distances
by the shift introduced by adding the distance embeddings. Moreover, no additional
parameters are added to the model and the entity information can potentially be
utilized throughout the model.

Method 3: Post-Indication

In addition to entity indicators and distance embeddings, three simple approaches
were explored that indicate the target entities after the GP-Transformer. An input
sentence is first encoded by the GP-Transformer, yielding context-aware Transformer
embeddings (h1,h2,h3, ...,hl), with each hi ∈ Rd, per BPE token for a sentence of
length l. Based on an averaging of sentence segments an entity-aware encoding m of
the input sentence is obtained. This sentence encoding is then used instead of h<End>

and is linearly mapped to the relations. The following sentence encodings where
explored:

• The entity average encoding (Entity-Avg) averages the Transformer embed-
dings of both entities and concatenates them with the averaged context (the full
sentence). When (he1

1 , he1
2 , ..., he1

w ) correspond to the Transformer embeddings
of the sentence’s first entity e1 and (he2

1 , he2
2 , ..., he2

s ) to those of the second
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entity e2, they are first averaged:

ve1 =
1
w

w∑
i=1

he1
i

ve2 =
1
s

s∑
i=1

he2
i

(4.3)

with ve1 ∈ Rd and ve2 ∈ Rd. The whole context is also averaged:

vc =
1
l

l∑
i=1

hi (4.4)

with vc ∈ Rd. To obtain the entity-aware sentence encoding m ∈ Rd·3, the
resulting vectors are concatenated:

m = ve1 ◦ ve2 ◦ vc (4.5)

No <Start> or <End> tokens are added to the sequence in the entity-avg
encoding.

• The segment average encoding (Segment-Avg) averages every segment of the
sequence independently and concatenates the resulting vectors. Segments are
the context before e1, e1 itself, context between e1 and e2, e2 itself and context
after e2. This results in a final sentence encoding m ∈ Rd·5. The procedure is
visualized in Figure 4.4. Again no <Start> or <End> tokens are added to the
sequence in this case.

m

+ + + +

h
Douglas

h
Adams h

English

Average Average Average

e1

v
e1

v
e2

e1 e2
before between after

Figure 4.4: Example visualization to obtain the entity-aware sentence encoding m based on averaging
of Transformer embeddings. Depicted is the segment average encoding for an example sentence with
the two entities “Douglas Adams” and “English”.

• The mixed encoding (Mixed) is similar to the entity average encoding: The
Transformer embeddings of both entities are averaged and concatenated. In-
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stead of additionally concatenating the averaged context vector, the Trans-
former embedding of the final <End> token is used. So m = ve1 ◦ ve2 ◦ hEnd

and m ∈ Rd·3.

Implementation wise, bit-masks are used to average entities (or segments) of the
input sentence. These bit-masks are created as tensors in a preprocessing step for
every segment (before, e1, between, e2, after) of the input sentence and are then
applied during training and inference dependent on the used encoding.

Architecture

The model’s architecture in regards to the three entity marking methods discussed
previously is illustrated in Figure 4.5. A pre-trained GP-Transformer functions as
the core part of the model. In a first step, the maximum sentence length lmax of all
sentences in the dataset is determined. Special padding tokens are added to every
sentence that is shorter than lmax. As for pre-training, the Unknown token is used for
padding.

Given a padded sentence, all initial token embeddings (with position and potentially
distance embeddings added) are packed into a matrix X ∈ Rlmax × d where d again
denotes the Transformer’s embedding dimensionality. X is then fed through the
GP-Transformer (see Section 2.2.2):

H = GP-Transformer(X) (4.6)

with H ∈ Rlmax × d. Here H can be interpreted as a sequence (h1, h2, ..., hlmax) of
context-aware Transformer embeddings hi ∈ Rd. Dependent on the entity marking
method being used, let g ∈ Rd·a either denote the Transformer <End> token embed-
ding5, h<End>, or one of the post-indication encodings. Here a dependents on the
method used for entity marking (a = 1 for entity indicators and distance embeddings,
a = 3 for Entity-Avg and Mixed, a = 5 for Segment-Avg). For classification, this
vector is then mapped to the relation classes:

ŷ = softmax(W · g + b) (4.7)

where W ∈ R|R|·2 × d·a, b, ŷ ∈ R|R|·2. By applying the softmax function, a probability
distribution over all relations is obtained. Since the directionality of the relation must
also be inferred, the number of classes is doubled, therefore adding one output node
that indicates the reverse directionality (tail occurs before the head in the sentence)
for each relation.

5Since sentences are padded, this is usually not the last token in the sequence.
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Figure 4.5: To make the GP-Transformer aware of the target entities, (a) insert special entity
indicators, (b) add embeddings that encode the relative distance of each token to the entities or (c)
post-indicate the entities by special entity-aware encodings. Note that only a simple example of three
tokens (e1, context, e2) is depicted and the context (also to either side of the entities) is usually larger.

In contrast to pre-training (Chapter 2), the model is fine-tuned in a supervised manner
on relation classification: Given a set of sentences with marked target entities and the
relation that is expressed between the entities (as illustrated in Section 3.2 and 3.3)
the model’s weights are updated in each training iteration. To assess the ability of the
model to correctly classify a sample, a negative log-likelihood loss of the predicted
probability ŷr, which corresponds to the ground truth relation r of the respective
sample, is minimized by stochastic gradient descent:

Losstask = −log ŷr (4.8)
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Additionally, Radford et al. (2018) employ language modeling as an auxiliary objec-
tive during fine-tuning, which is adopted in this work:

Loss = Losstask + α · LossLM (4.9)

Here α controls the weight of the language modeling loss in the total loss. See
Section 2.2.2 (especially Equation 2.12) for the description of the language modeling
loss LossLM.

Note that in practice the model is trained on mini-batches of samples instead of
single samples. In this case, the loss is summed over all samples of the batch. The
model is trained for a set amounts of epochs. Here an epoch denotes a training run
over the entire training set. The training procedure executes the following steps:

1. Dependent on the method used to mark target entities, (a) entity indicators,
(b) distance embeddings, (c) post-indication, pre-process each sentence of the
dataset:

(a) Add entity indicators and <Start> + <End> tokens to the sentences.

(b) Create, for each sample sentence, the sequence of embedding matrix
indices that correspond to the distance embeddings.

(c) Only for Mixed encoding: Add <Start> + <End> tokens.

2. Randomly shuffle the training samples in the beginning of each epoch.

3. Create a mini-batch of samples.

4. Assignment of corresponding embedding vectors.

(a) Embed the BPE tokens, position embeddings and special tokens.

(b) Embed the BPE tokens, position embeddings and distance embeddings.

(c) Embed the BPE tokens and position embeddings (and <Start> + <End>

special tokens in the Mixed encoding).

5. Sum the resulting embedding vectors.

6. Feed the batch through the GP-Transformer and obtain the context-aware
embeddings after the last Transformer block.

(a+b) Extract the Transformer embedding hEnd corresponding to the End token
for each sample.
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(c) Apply one of the previously (Section 4.2) described post-identification
methods.

7. Apply Equation 4.7 to obtain a probability distribution over relations for each
sample.

8. Calculate the loss (4.9) and update the model’s weights using SGD.

Steps (3-8) are repeated for each mini-batch of the training data for a set amount of
epochs.

4.3 Experiments

In the following experiments, the GP-Transformer’s performance is assessed for
relation classification. Particularly the focus is on evaluating the performance impact
of the different entity marking methods described in Section 4.2 and to validate the
effect of language model pre-training.

Setup

Because the pre-trained English GP-Transformer (Radford et al. 2018) is employed
as the core component for relation classification, the model’s architecture is fixed
and most hyperparameters remain the default values (e.g. 12 Transformer blocks,
12 heads per block, 768 dimensional embeddings). Special tokens and the weights
of the final classification layer are initialized with values drawn from a normal
distribution (µ = 0, σ2 = 0.02). The final classification layer’s bias is initialized
with 0. Akin to Radford et al., a linear increasing and decreasing (warmup over
0.2% of samples) learning rate with a peak value of 6.25 · 10−5 is applied during
fine-tuning. The mini-batch size is set to 32 and α to 0.5 (see Equation 4.9). A
dropout with a rate of 0.1 is applied to the classifier. In each setting, fine tuning the
GP-Transformer for three epochs proved sufficient for the FewRel dataset. More
epochs led to stagnating results and eventually overfitting on the training dataset.
Because the SemEval dataset is rather small compared to FewRel, the loss is still
decreasing after three epochs. Therefore, the GP-Transformer was fine tuned for five
instead of three epochs on the SemEval dataset.

In order to evaluate the model, the accuracy, precision, recall and F1 scores (macro-
averaged over relation classes) are computed for both the SemEval and the FewRel
test dataset. The directionality of the relation must also be predicted for both datasets.
By that, the number of classes is 160 (80 · 2) for FewRel and 19 (9 · 2 + 1) for
SemEval (directionality cannot be inferred for the “Other” class). For SemEval, the
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official train/test split was used. Here the official Macro-F1 score which excludes the
“Other” class and takes directionality into account6 is also reported. For FewRel, the
standard classification split is used (3.3).

A bidirectional recurrent neural network with gated recurrent units (see Cho et al.
2014 for GRU reference) is employed as a strong baseline model (BI-GRU). The
model uses 300-dimensional GloVe7 embeddings as input, which are pre-trained
on the English Wikipedia corpus8. Entity indicators are fed into the GRU before
and after each entity. The learning rate is set to 0.001 and weight decay is added
with the regularization parameter set to 0.001. Training is conducted for 30 epochs
with a batch size of 10. The Adam optimizer is used and a step learning rate decay
is applied by reducing lr by half every 5 epochs. The embedding layer units are
dropped out with a probability of 50% and weights were initialized by using Xavier
initialization (Glorot and Bengio 2010), while the biases are initialized by a uniform
distribution. The bidirectional GRU was optimized in previous work on the SemEval
dataset.

Comparison with State-of-the-Art

Table 4.1 displays the evaluation results on the SemEval dataset. The averaged
scores of five runs are reported for each model. As expected, the model performs sub-
stantially worse without entity markers (GPT) compared to adding entity indicators
(GPT+EI) or distance embeddings (GPT+DE). While both methods of indicating the
target entities perform well on the dataset, entity indicators outperform distance em-
beddings by about 4.8% official macro-F1. Moreover, the GP-Transformer surpasses
the already strong bidirectional GRU baseline by about 3.7 official macro-F1.

Model Accuracy Precision Recall Macro-F1 O-Macro-F1
GPT + EI 83.77 79.28 80.29 79.72 87.34
GPT + DE 78.77 74.28 74.55 74.3 82.53

GPT + Mixed 82.38 78.7 77.87 78.12 86.11
GPT + Segment-Avg 82.66 79.48 78.48 78.81 86.52
GPT + Entity-Avg 82.75 79.32 78.24 78.51 86.3

GPT 74.52 70.77 69.75 70.14 78.42

Bi-GRU (Baseline) 79.85 75.69 75.83 75.55 83.64

Table 4.1: Average of five runs (SemEval) for each model. In the bottommost model (GPT), entities
are not marked.

6How the directionality is taken into account is not further specified in Hendrickx et al. (2010). The official
scorer is utilized in this work.

7from https://nlp.stanford.edu/projects/glove/
86B tokens, 400K vocabulary size
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Albeit their simplicity, the post-identification methods perform similarly well and
rank only slight behind GPT+EI, even surpassing GPT+DE and the baseline. These
results show, that while indicating the entities throughout all GP-Transformer layers
(as in GPT+EI) improves the performance, competitive results are also obtained
when the GPT-Transformer itself has no notion of the entities by indicating them only
before the final classification layer. In this case, simply averaging the Transformer
embeddings of the entities (or all segments as in Segment-Avg) before classification
improves the official macro-F1 by about 8 (GPT to GPT+Segment-Avg).

As visible in Table 4.2 (right), training the GP-Transformer on the task is fairly stable
over the five runs, resulting in a low standard deviation of 0.23. With an official
macro-F1 score of 87.34, the GP-Transformer with entity indicators ranks third best
behind the Multi-Level Attention CNN by L. Wang et al. (2016) and the entity-aware
BERT (H. Wang et al. 2019) (Table 4.2 left). A more detailed list of results that
were reported for other models in the literature can be found in Appendix D.1. The
training loss curve as well as the test set official macro-F1 over epochs is included in
Appendix C.1 for the best performing model (Run 4 in Table 4.2).

Model M-F1
Entity-Aware BERTSP
(H. Wang et al. 2019)

89.0

Multi-Level Attention
(L. Wang et al. 2016)

88.0

GPT + EI
(own) 87.34

TRE
(Alt, Hübner, and Hennig 2019)

87.1

SDP deep RNN
(Xu, Jia, et al. 2016)

86.10

Attention CNN
(Shen and Huang 2016)

85.9

Run Off-Macro-F1
1 87.10
2 87.15
3 87.43
4 87.66
5 87.34
Avg. 87.34
Stdev. 0.23
Best 87.71

Table 4.2: (Left) Selection of results reported on the SemEval dataset (Official-Macro-F1). The
GP-Transformer with entity indicators ranks second best, slightly behind the Multi-Level Attention
CNN by L. Wang et al. 2016. (Right) Official-Macro-F1 scores of the best performing architecture
(GPT+EI) over five runs.

Table 4.3 displays the evaluation results of the FewRel dataset. Again, the average
of five runs is reported for each model. The results are similar to those of the
SemEval dataset, with entity indicators slightly outperforming distance embeddings.
In comparison to SemEval, the difference between using no entity markers at all
(GPT) to employing entity indicators is much larger (about 22% macro-F1 for FewRel
and 10% macro-F1 for SemEval). Since FewRel contains a large variety of common
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Model Accuracy Precision Recall Macro-F1
GPT + EI 76.01 74.57 74.81 74.32
GPT + DE 75.03 73.51 73.69 73.22

GPT + Mixed 74.08 72.74 72.93 72.52
GPT + Segment-Avg 73.93 72.47 72.43 72.14
GPT + Entity-Avg 73.55 72.3 72.09 71.85

GPT 55.77 52.68 53.12 52.15

Bi-GRU (Baseline) 74.17 72.77 72.48 72.03

Table 4.3: Average of 5 runs (FewRel) for each model. In the bottommost model (GPT), entities are
not marked.

relation types, it is more likely that multiple relations are expressed in a single
sentence. Along with the fact that the FewRel dataset contains longer sentences on
average (see 3.3), this introduces additional noise and makes the spotting of relevant
phrases that suggest a specific relation more challenging without any indication of
the target entities. As for SemEval, the post-indication methods perform similar
well. The best post-indication method is GPT+Mixed with 72.52 macro-F1 (about
1.8 worse than GPT+EI). However, the GP-Transformer with distance embeddings
(GPT+DE) outperforms the post indication methods on this dataset. One explanation
is that the distance embeddings require a larger and more diverse dataset (such as
FewRel) to be trained successfully. The training loss curve as well as the test set
macro-F1 over epochs is included in Appendix C.2 for the best of the five GPT+EI
runs (74.60 macro-F1).

Effect of Sentence Length
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Figure 4.6: Influence of the sentence length on the classification quality for the FewRel (left) and
SemEval (right) dataset. Only sentence lengths with more than 10 samples were taken into account.

The influence of longer sequences on the classification quality is depicted in Figure
4.6. The negative effect of longer sequences is especially obvious for the FewRel
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dataset, with the accuracy dropping after a sentence length of about 40 BPE tokens.
These results indicate that more sophisticated methods may be necessary to diminish
the negative influence of noise in relation classification.

Error Inspection

To gain an insight into common error sources, wrong relation assignments were
manually inspected. Table 4.4 shows a selection of common error cases for the
SemEval dataset9. Remarkably is the frequent confusion with the “Other” class:
In about 74% of cases (321 of 433 misclassified samples), a sample was falsely
assigned to the “Other” class or a sample from the “Other” class was assigned to one
of the proper relations. It is reasonable to assume that the noisy nature of the “Other”
class, containing entity pairs that are not related by one of the SemEval relations, is
hardly distinguishable from the proper relations.

GT Prediction Sentence

Other Instrument-
Agencya

The author index was generated using the latex au-
thorindex package.

Component-
Wholeb Other

A more spare, less robust use of classical [motifs]head
is evident in a [ewer]tail of 1784-85.

Other
Message-
Topicc

However several problems were pointed out during
the course of this feasibility study.

Component-
Wholeb

Member-
Collectiond

Now this [laboratory]head also is part of a larger
[organisation]tail.

Instrument-
Agencya

Entity-
Destinatione

At my work, an [electronic engineer]tail has migrated
into [embedded software]head.

Component-
Wholeb

Component-
Wholeb

The [chain]tail of [Hawaiian]head islands provides ev-
idence that the Pacific Plate moves to the northwest.

Table 4.4: Common error cases for the SemEval dataset: Confusion with “Other” class (top) and
misclassifications between proper relations (bottom). [Hawaiian]head denotes that “Hawaiian” was
predicted as the relation’s tail, but is actually the head according to the ground truth.

a“An agent uses an instrument” (Hendrickx et al. 2010)
b“An object is a component of a larger whole” (Hendrickx et al. 2010)
c“A message, written or spoken, is about a topic” (Hendrickx et al. 2010)
d“A member forms a nonfunctional part of a collection” (Hendrickx et al. 2010)
e“An entity is moving towards a destination” (Hendrickx et al. 2010)

Table 4.4 illustrates common “error cases” for the FewRel dataset. Upon closer
inspection, many “error cases” were found to be actually correctly classified samples
and are mainly attributed to missing annotations in the FewRel dataset: Because just
a single relation is annotated in FewRel for each sentence but multiple different rela-

9Predicted by the best performing model, run 4 in Table 4.2 (right)
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GT Prediction Sentence
Notable
Worka Architectb

The design inspired [Frei Otto]head ’s arena designs
for the [Olympic Stadium]tail in Munich.

Head of
Governmentc

Country of
Citizenshipd

On 5 August 2011, Kazamias was appointed
finance minister of [Cyprus]head by [Demetris
Christofias]tail replacing Charilaos Stavrakis while
still serving his term.

Residencee Head of
Governmentc

He was a candidate for governor of [Connecticut]tail,
losing to [Abiram Chamberlai]head.

Table 4.5: In FewRel, many “error cases” are attributed to multiple relations that are expressed in the
same sentence between the two target entities: While the model actually predicted correct relations in
the above examples, the prediction is counted as an error due to missing annotations in the dataset.
[Frei Otto]head denotes that “Frei Otto” was predicted as the relation’s tail, but is actually the head
according to the ground truth.

a“Notable scientific, artistic or literary work, or other work of significance among subject’s works” (Wikidata)
b“Person or architectural firm that designed this building” (Wikidata)
c“Head of the executive power of this town, city, [...] or other governmental body” (Wikidata)
d“the object is a country that recognizes the subject as its citizen” (Wikidata)
e“The place where the person is or has been, resident” (Wikidata)

tions are potentially expressed between the same entity pair, a sample is frequently
misclassified by the model according to the ground truth10. A typical example can be
found in the middle of Table 4.4: Because “Head of Government” commonly entails
“Country of Citizenship” the model frequently misclassifies a sample according to
the ground truth despite actually predicting a correct relation. With this, the actual
model’s performance on FewRel is probably higher than reported in Table 4.3, but
cannot fully be correctly assessed due to missing annotations.

Ablation Studies

To gain a better insight into the combination of relation classification and transfer
learning, additional ablation studies are conducted on four different settings:

• (freeze) In order to verify if an expensive fine-tuning on the target domain
is necessary, or if the model is able to extract relevant information from the
context-aware embeddings alone, the GP-Transformer is not fine-tuned in this
setting. Since there is no point in adding additional special tokens without fine-
tuning, the Segment-Avg post-indication method is employed in this setting.

10This is not only a problem of the standard classification split used for relation classification (see Section
3.3), but also occurs in the original FewRel split that is used for few-shot classification later in this work: In
various cases, multiple relations of the original train or validation set were found to be expressed between a
single entity pair.
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• (entities) As mentioned in Section 3.3, the FewRel dataset contains multiple re-
lations that restrict the choice of possible entities. Because the GP-Transformer
places words in close proximity in the embedding space when they share
certain semantic similarities (like person names, see Section 2.4) it may be
possible to predict a relation based on the two entities alone, which is assessed
in this setting. Instead of inserting entity indicators into the sequence, the two
entities in a sample are simply separated by a special separate token, which is
shown in Figure 4.7. As before, the End token is used for classification.

Adams English <End>Douglas<Start> <Sep>

Figure 4.7: In the entities setting the participating entities are separated by a special separate token
(<Sep>), while the surrounding context is omitted.

• (from-scratch) Learning properties of and dependencies between words in
an unsupervised manner on plenty of data is the key benefit of employing
pre-trained word embeddings or language models like the GP-Transformer.
In order to check if pre-training is also beneficial for the rather large FewRel
dataset, the GPT+EI model is trained from-scratch in this setting.

• (BPE only) The main argument for transferring whole models to a new domain
instead of employing fixed word embeddings, is their ability to learn word
representations dependent on the specific input context. By omitting the GP-
Transformer’s weights and only retaining the learned BPE token embeddings,
the advantages of learning context-aware embeddings for relation classification
can be assessed in this setting. This experiment is conducted with the GPT+EI
model.

The results of the four ablation studies are depicted in Figure 4.8. Original refers to
the fine-tuned GPT+EI model from Table 4.3: When the GP-Transformer is not fine-
tuned on the target domain (freeze setting) and the default hyperparameters outlined
in the beginning of this section (same as for original) are used, a considerable
worse performance is achieved (54.03 to 74.32 macro-F1). Instead of using the
default hyperparameters, the learning rate was additionally tuned for this setting by
a manual search over different values: In contrast to fine-tuning (original), the freeze
model performs considerably better with a higher learning rate of 0.00111. Still, the
freeze model is by about 8.68 macro-F1 score behind the original model (65.64 to

11When fine-tuning is enabled (original), the model’s loss does not decrease with such a high learning rate.
Training the model for more epochs in the freeze setting amounts to roughly the same score as with a learning
rate of 0.001 (tested with up to 12 epochs).
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Figure 4.8: Ablation studies on the FewRel dataset: (freeze) The GP-Transformer is not fine-tuned
on relation classification. (entities) Predict relationship solely with regards to the participating entities.
(from-scratch) Omit weights and BPE embeddings of the pre-trained GP-Transformer and train it
from-scratch. (BPE only) Only omit GP-Transformer weights but retain BPE embeddings. Ablation
studies are either conducted with the default hyperparameters (as outlined in the beginning of this
section) or specifically tuned hyperparameters.

74.32). This confirms that a fine-tuning of the GP-Transformer is essential to detect
relations between entities or that more sophisticated downstream models like LSTMs
are needed to reach a similar performance. However, this results in an even more
expensive training process, whereas fine-tuning the attention-based GP-Transformer
alone is able to achieve impressive results on the SemEval and FewRel dataset.

Although the context is omitted in the entities setting, a macro-F1 score of 61.18 is
reached. While this is inferior to predicting the relation based on the whole sentence
and using entity indicators (74.32 macro-F1), it outperforms the GPT without entity
markers (52.15 in Table 4.3). This confirms the assumption that it is possible in many
cases to predict the correct relation based on the entities alone, especially when the
relation types are very specific like those in FewRel. Still, maintaining the context
produces far better results but to indicate the target entities is important in this case
due to the additional noise.

The from-scratch setting as well as the BPE only settings are conducted with the
GPT+EI model. When trained with the default hyperparameters, the macro-F1
amounts to 64.36 in the from-scratch setting. Training the model for a longer
duration (12 epochs12) improves the performance by 1.93 points to 66.29 macro-F1.

12Again manually tuned. More epochs lead to stagnating results. Increasing the learning rate instead lead to
inferior results.
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As expected, the model performs substantially worse when it is trained from-scratch
on the relation classification task (66.29 to 74.32 macro-F1). This is in line with
other findings on transfer learning and is also the reason why regular fixed word
embeddings are dominantly employed in the recent years: Even a fairly large dataset
like FewRel cannot fully capture the semantics of the large variety of words in human
language. Since many words, especially named entities, differ between the train and
test dataset, a pre-training on large corpora proves to be important for generalization.
When the pre-trained BPE token embeddings are not omitted (BPE only), the model
outperforms the from-scratch setting by about 4.72 points when also trained for 12
epochs (66.29 to 71.01). Still, transferring the whole model (74.32 macro-F1) yields
superior results compared to only retaining the embedding matrix. This confirms that
the pre-trained ability of the GP-Transformer to relate words based on the specific
input context is important for relation classification.

4.4 Conclusions

In this chapter, the GP-Transformer was fine-tuned on relation classification. By
training the model for only a few epochs, it achieves competitive performance
compared to other state-of-the-art models. Taking the entities into account was
shown to be critical for the model’s performance, especially in the FewRel dataset.
Here adding special entity indicators before and after the two entities works best.
Post-indicating the entities was also shown to obtain good classification results.
Furthermore, fine-tuning the GP-Transformer proved to be essential for relation
classification, confirming that the self-attention mechanism is very well suited for
this task.

However, not fine-tuning the complex GP-Transformer reduces training duration
and makes the pre-trained Transformer embeddings more universally applicable.
Findings in other deep neural networks suggest (e.g. in image classification, as
shown in Junkert et al. 2017) that pre-trained model’s tend to overadapt to the pre-
training objective, in this case language modeling, in upper layers. An interesting
direction for future work on this topic could be to validate this assumption for the GP-
Transformer and use the context-aware embeddings of inner layers (or a combination
of different layers as the ELMo model by Peters et al. 2018) when the model is not
fine-tuned on the target task.
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Chapter 5

Few-Shot Relation Classification

Machine learning algorithms, and in particular conventional relation extraction,
usually require a huge amount of labeled data in order to identify the recurring
patterns that define a specific problem. In practice, however, such labeled data
is often scarce and can only be acquired at great expense: When dealing with a
multi-way classification problem, samples must be annotated for every class (here, a
relation) the system in question is designed to detect. So whenever a new class is
added to the system, the costly process of data annotation starts all over again. In
relation classification, classes can differ largely from domain to domain and can take
very specific forms dependent on the target problem. For example, consider reports
written by a service technician describing problems with “Machine X3Y”:

Relation Sentence
Liquid Leakage Today, Machine X3Y leaked a concerning amount of oil.
Loose Part The lever of Machine X3Y almost fell off when pulled.

Humans are known to be able to learn a new concept from only a few or even a
single sample. So when the service technician describes a novel type of encountered
problem, like “Noise”, you would instantly be able to tell it apart from “Liquid
Leakage” or “Loose Part” independent of it being worded as “The [red button]tail

of [Machine X3Y]head makes a strange noise when pressed” or “The [red button]tail

of [Machine X3Y]head squeaks when it is pushed down”. Neural networks on the
other hand are built to alter their internal weights only slightly when a new sample is
encountered to avoid overfitting to certain features. So when only a single “Noise”
relation instance is presented to the model it would gradually overfit to the sample
with each iteration or a sufficiently high enough learning rate.
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The task of few-shot relation classification is especially designed to solve the problem
of data scarceness of never before encountered relations. Analogous to standard
relation classification, the model is trained on a set of labeled relation samples. Here
the quantity of train relations and corresponding samples can be large dependent on
the dataset. The challenge is then to adapt the model to new relations based on a
limited amount of examples per relation: Given a set of C relations (ways), which
the model was not trained on, predict the correct relation based on only N examples
(shots) per relation. The set of relation examples is commonly referred to as the
support set, while the sample that the system must classify based on the support set
is denoted as a query. Usually, N is very small, e.g. five or even a single example per
relation (as visualized in Figure 5.1). The few-shot methodology has only recently
been applied to relation classification, but many attempts to adapt a network trained
on many objects to a few samples of new objects have already been made in other
domains or modalities, especially in image classification (e.g. Vinyals et al. 2016,
Snell, Swersky, and Zemel 2017, Finn, Abbeel, and Levine 2017).

New Relation: Manufacturer
The Canon PowerShot TX1 is 

a Canon digital camera.

Query
The LG G6 is an Android smartphone 

developed by LG Electronics.

New Relation: Architect
Its main attraction is 

Andrea Palladio's Villa Badoer.

New Relation: Constellation
NGC 271 is a spiral galaxy 
in the constellation Cetus.

Train Relations

?

Few-Shot Model

Occupation
Screenwriter
Composer
Country
...

Residence
Director
Platform
Tributary

...

Sport
Citizenship
Performer

Winner
...

Predict new relations based 
on a few examples (shots)

Train with many samples of...

Figure 5.1: Few-shot classification: The model is trained on a dataset containing a large variety of
different classes (here relations) and samples. During evaluation, the model must decide which one of
unseen classes (relations), which the model was not trained on, is expressed in the query sentence,
based on only a few examples per new class. Depicted is a 3-way (three new classes) 1-shot setting
(one example per class).
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This chapter builds upon results from Chapter 4, indicating that the GP-Transformer
is a good option for relation classification. The prototypical network (Snell, Swersky,
and Zemel 2017), which achieved state-of-the-art results in various few-shot tasks, is
combined with the GP-Transformer for few-shot relation classification. Prototypical
Networks create a comprehensive representation of each class (called prototype)
in order to match it with the query. Here the GP-Transformer acts as an elaborate
sentence encoder and yields vector representations of single sentences. These are
later used to form the relation’s prototype by a simple averaging over the support
instances, which is described in detail in Section 5.2. In experiments on the FewRel
dataset (discussed in Section 3.3), which is especially designed for few-shot relation
classification, the following questions are addressed:

• How does the GP-Transformer compare to the model proposed by Han et al.
(2018a), who employ a CNN with word embeddings as a sentence encoder in a
prototypical network?

• Language modeling pre-training was found to be important in Chapter 4. Does
the language model pre-training of the GP-Transformer has a greater impact on
a low resource task like few-shot relation classification compared to standard
relation classification?

• The few-shot scenario is normally evaluated on classes (here, relations) that
the model did not observe during training. In practice however, new classes
would most likely be added to the existing set of training classes, requiring the
model to decide between training classes and the newly added classes. How
does the model perform when a new class is matched with existing training
classes?

5.1 Related Work

Since a variety of different architectures were proposed for few-shot classification
in the recent years, especially in image classification, this section only contains a
brief overview of approaches that were already applied to the relation classification
domain.

Han et al. (2018a) evaluated several baseline methods for few-shot classification on
the FewRel dataset, namely meta networks (Munkhdalai and Yu 2017), simple neural
attentive learner (SNAIL, Mishra et al. 2017), graph neural networks (GNN, Garcia
and Bruna 2017) and prototypical networks (Snell, Swersky, and Zemel 2017). Meta
networks divide weights into fast and slow changing weights: While slow weights
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are trained as usual by minimizing the classification loss, fast weights are generated
by a separate meta learner to allow for rapid generalization across individual samples.
SNAIL concatenates all support instances for a given class into a sequence, followed
by the query instance. It combines temporal convolutions with causal attention in
order to learn from past experiences. Graph neural networks organize all encoded
support and query instances in a fully connected graph. The labels of the support
set (i.e. the specific relation type) are also embedded into the corresponding node.
The model is then trained to learn the weights between the graph nodes in order
to correctly match a query with the support instances. Prototypical networks on
the other hand (described in detail in Section 5.2) learn to create comprehensive
representations, called prototypes, from the support samples and match these with the
query instance. Han et al. (2018a) employ the aforementioned few-shot algorithms
to classify relations of the FewRel dataset. In each model, they use the output of a
regular convolutional neural network as the encoding for a given sample. They also
employ word embeddings and the entity distance embeddings, which are described
in section 4.2. In addition to the elaborate few-shot models described above, Han et
al. evaluate a simple k-NN approach and a fine-tuning baseline.

Gao et al. (2019) also employ a prototypical network with a CNN encoder, but extend
the prototype creation with an attention mechanism. In contrast to conducting a
simple averaging of the support instances to create the corresponding prototype, as
in the original prototype network paper, Gao et al. propose an instance-level and
feature-level attention over the support instances. Because prototypes are created
based on only a few samples, they are prone to outliers and noise. The instance-level
attention is designed to reduce the impact of noise by maintaining only those support
instances which are similar to the query, i.e. by weighting the support instances with
regards to their distance to the query instance. The feature-level attention on the
other hand learns to weight the feature dimensions of the prototype representation
differently when it is matched with the query encoding in order to retain only the
most informative features.

5.2 Approach

In this work, a prototypical network is employed in conjunction with a pre-trained
GP-Transformer, which functions as an elaborate sentence encoder. This model is
also denoted as prototypical GP-Transformer from now on. Prototypical networks are
specifically designed for a few-shot scenario and were proposed by Snell, Swersky,
and Zemel (2017). Despite their simplicity, they achieve state-of-the-art results in a
number of different tasks. Moreover, prototypical networks can be combined with
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The Canon PowerShot TX1 is 
a Canon digital camera.

Semper Ardens is a product line of beer by the 
Danish brewery Carlsberg.
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Figure 5.2: In a prototypical network, support samples of a class (s1, s2) are first encoded by an
instance encoder into a feature vector. For each class (three relations in the example), a prototype is
created by simply averaging the corresponding feature vectors. A query sample q is also transformed
into the same feature space by the instance encoder and assigned to its nearest prototype based on the
euclidean distance.

any arbitrary model, which serves as an instance encoder and transforms a given
sample into a d-dimensional feature vector h, without requiring any changes to the
model’s architecture. In the first part of this section, the model’s architecture is
described. The second part explains the training procedure of the model, which is
based on episodes of samples that mimic the few-shot task’s objective.

Architecture

As explained in Section 5, a support set of N labeled samples Sr = {s1, ..., sN} is
given for each (relation) class r ∈ R in a few-shot setting. In few-shot relation
classification, each of these samples correspond to sequences of byte pair encoded
tokens si = (t1, ..., tl) (with l again denoting the sentence’s length), which express a
certain relationship between two entities. The number of classes C, which the model
is required to predict, is also referred to as the way. For example, in a 10-way 5-shot
(C = 10,N = 5) scenario, the task is to assign 1 out of 10 classes (all unseen during
training) to a query instance q, based on only 5 labeled samples per class. In order to
do so, each sample si is first encoded by an instance encoder fθ into a feature vector
mi ∈ Rd (here d denotes the dimensionality of mi):

mi = fθ(si) (5.1)
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where θ denotes the set of learnable parameters of the instance encoder, in this work
the GP-Transformer model. In order to match the support instances of each class with
a query, the prototypical network first transforms these instances into a prototype
pr ∈ Rd, which represents the corresponding relation type. This is done by simply
averaging the encoded support instances that belong to a class r:

pr =
1
N

∑
si∈Sr

fθ(si) (5.2)

Next, the query instance q is encoded in the same way as the support instances by
the instance encoder fθ:

mq = fθ(q) (5.3)

In order to compare the query with a prototype, the euclidean distance between both
feature vectors, pr and mq, is computed by:

d(pr,mq) =

√
(pr −mq) · (pr −mq) (5.4)

To obtain a probability distribution over all classes, a softmax of the distances of the
query to each prototype is computed next. Since the closest prototype must have the
highest probability after the softmax application, the negative euclidean distance is
employed:

P(y = r | q, fθ) =
e−d(pr ,mq)∑

r′∈R e−d(pr′ ,mq) (5.5)

Because the GP-Transformer with entity indicators yielded the best results in relation
classification (see Chapter 4), the same model is applied as the instance encoder in
the few-shot setting. Just like in relation classification, the Transformer embedding
corresponding to the special <End> token, hEnd, is used as the feature vector mi of a
sample si. The whole procedure of support and query instance encoding, prototype
computation and query assignment is also illustrated in Figure 5.3.
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Figure 5.3: Prototypical Network, which uses the GP-Transformer as an instance encoder. Illustrated
is a 2-way 2-shot setting. First, the support instances of both relations as well as the query instance
are transformed into a feature vector by extracting the <End> token of the last Transformer block
(see Section 4.2). Next, the prototypes p1, p2, which represent relations r1 and r2 respectively, are
created by averaging the feature vectors of the corresponding support samples. The euclidean distance
between the query feature vector and the prototypes is computed. A final softmax application over
the negative distances (representing the similarity between the feature vectors) yields a probability
distribution over the two classes. In the example, the query instance is classified as r2, because it is
the most likely classed based on the softmax probability.

Training

Just as in standard relation classification (see Section 4.2), the model is trained by
minimizing the negative log-likelihood of the ground truth relation r based on a large
set of training relations Rtrain and corresponding samples:

Loss = −log P(y = r | q, fθ) + α · LossLM (5.6)

As in standard relation classification, samples of a batch are padded to the same
length and language modeling is employed as an auxiliary objective in addition
to the classification objective. However, in order to mimic the few-shot objective
(predict the correct relation based on a few examples per relation) the model is
trained on batches of episodes. Each episode is composed of Ctrain relation types
and Ntrain support samples per relation type. Here Ctrain and Ntrain can mimic the
evaluation settings, i.e. Ctrain = C,Ntrain = N, but also be set to other values. To
speed up computation, M query instances per each of the Ctrain relations are assigned
simultaneously in a single episode. Batches of episodes are created randomly in each
of I iterations. During training, the negative log-likelihood loss is summed over all
batches and every query instance within a batch. The training procedure for a single
episode per iteration (batch size = 1) is depicted in Algorithm 2. Implementation
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Algorithm 2 Training procedure: Ctrain refers to the amount of training relations per episode
and Ntrain to the amount of support samples per training relation in the episode. T denotes
the full training set, which contains k (e.g. k = 1000) samples per training relation r ∈ Rtrain
(e.g. Rtrain = {occupation, composer, country, sport, winner, residence, ...}). Tr denotes the
set of training samples of relation r. Sample returns random data points without replacement.
M denotes the number of queries per relation and I the number of training iterations.

1: procedure CreateEpisode . Sampling of episodes per iteration
2: S ← {}

3: Q ← {}

4: Repisode ← Sample(Rtrain,Ctrain) . Sample Ctrain unique relations
5: for r ∈ Repisode do
6: Sr ← Sample(Tr,Ntrain) . Sample Ntrain unique support samples
7: Qr ← Sample(Tr \ Sr,M) . Sample M unique query samples
8: S.Add(Sr)
9: Q.Add(Qr)

10: return S, Q
11:

12: procedure Train . Training Routine
13: while i < I do
14: Loss← 0
15: S, Q ← CreateEpisode()
16: for Sr ∈ S do . Encode support sets
17: pr ← CreatePrototype(Sr, fθ) . See Equation 5.2
18: for Qr ∈ S do . Assign queries
19: for q ∈ Qr do
20: Loss← Loss − logp(y = r | q, fθ) + α · LossLM . See Equation 5.6
21: SGD( fθ,Loss) . Update the instance encoder’s (GP-Transformer’s) weights
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wise, the GP-Transformer is only run once in each iteration by stacking the support
and query samples into a single tensor, which is encoded by the GP-Transformer.

5.3 Experiments

The purpose of the following experiments is to evaluate if the GP-Transformer is suit-
able as the feature extractor in a prototypical network and how this implementation
compares to state-of-the-art model’s. The impact of language modeling pre-training
is also assessed in this section for few-shot relation classification.

Setup

In order to compare the results of the prototypical GP-Transformer to the baseline
models of the original FewRel paper (Han et al. 2018a), the model was trained and
evaluated on the same few-shot scenarios, namely: 5-way 5-shot, 5-way 1-shot,
10-way 5-shot and 10-way 1-shot. As explained before (see Section 3.3), the set of
training- (64 classes) and validation-relations (16 classes) are disjoint in the FewRel
dataset, so the model is required to generalize to unseen relations. The baseline
models by Han et al. were only evaluated on the hidden test set, thus no scores on
the validation set were reported. To be able to make a fair comparison to the baseline
models during development, the best performing baseline model (prototypical CNN)
was re-trained and evaluated on the validation set with the FewRel framework, which
is available on GitHub by Han et al. (2018b).

The hyperparameters of the GP-Transformer were set according to those outlined
in Section 4.3 for the standard classification task. Again the English-language
pre-trained version by Radford et al. (2018) is employed. Since the prototypes
are computed by averaging the <End> token embedding vectors of each support
sample after the last Transformer block, the prototypes are also 768-dimensional.
As explained in Section 5.2, the prototypical GP-Transformer is trained on episodes
of randomly selected relations and samples of the training set. The training set
contains 64 relations and 700 samples per relation (see Section 3.3). Snell, Swersky,
and Zemel (2017) report that setting the number of training relations per episode
(Ctrain) to a higher value than during evaluation is beneficial for few-shot learning, so
Ctrain > C. The number of shots Ntrain should be matched with those of the respective
evaluation setting, so Ntrain = N. In light of this advice, the number of ways Ntrain

was set to 20 during training for each of the four scenarios. Meanwhile, the number
of shots mimic those encountered in the specific evaluation scenario during training.
The number of queries M per relation was set to 5, while the batch size was set to 1
due to memory restrictions. Note that the loss still depends on multiple samples in a
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single episode, even if the number of episodes per batch is set to 1. For example, in
a 5-way 5-shot setting the episode’s loss is computed based on 25 query samples (5
per relation). 5000 training iterations were found to be sufficient for every few-shot
setting.

Because Han et al. reported no hyperparameters for the prototypical CNN, the
default values of the FewRel framework were used: A train way of 20, learning rate
of 0.1, weight decay of 10−5, hidden size of 230 and 30.000 train iterations. The
CNN instance encoder uses 50-dimensional pre-trained GloVe word embeddings
and 5-dimensional distance embeddings.

Comparison with State-of-the-Art
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Figure 5.4: The prototypical GP-Transformer (blue bars) and the baseline prototypical CNN (red
bars - Han et al. 2018a) were both evaluated on the official validation set. The graph shows the
averaged results of 3 runs, each with 3000 random episodes and 5 queries per relation.

Figure 5.4 displays the results that were obtained by the baseline model (red) and
the prototypical GP-Transformer (blue) for each of the four few-shot scenarios. To
mimic the practice of the FewRel framework, both models were trained 3 times and
evaluated on 3000 random episodes with 5 queries per relation (e.g. 75000 query
samples per run in the 5-way settings). The averaged accuracy on the validation
set over the 3 training runs is reported for each setting. As visible in the figure, the
GP-Transformer outperforms the baseline model in every setting by a large margin.
The smallest difference with about 4.37% accuracy was obtained in the 5-way 5-shot
scenario, which is the easiest of the four, while the GP-Transformer outperforms the
baseline model in the 5-way 1-shot setting by 6.73% accuracy. The difference is
even higher in the 10-way settings: 7.24% accuracy in the 10-way 5-shot setting and
7.28% accuracy in the 10-way 1-shot setting. The training loss curve of the 10-way
1-shot setting and validation accuracy over iterations is included in Appendix C.3.
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As to acquire the final results on the hidden test set, the best performing prototypical
GP-Transformer was also submitted via CodaLab1. CodaLab allows the creation of
so-called worksheets, which are built to run reproducible experiments: Since the
bundles (e.g. python files or model checkpoints) are immutable, they can later be used
to reproduce an experiment. The code that is required to evaluate the prototypical
GP-Transformer was uploaded to CodaLab and the final bundles were then sent to the
authors of the FewRel dataset, who executed the code on the hidden test set. The test
set comprises of 20 relation types which do not occur in the training or validation set
(see Section 3.3). The evaluation results of the prototypical GP-Transformer as well
as the baseline models and the hybrid attention CNN by Gao et al. (2019) are listed
in Table 5.1. Since Gao et al. developed the hybrid attention for multi-shot scenarios,
no results for the 1-shot scenarios are reported. They also report results of an own
implementation of a prototypical CNN without attention (Proto (CNN)* in Table
5.1), which performs better than the baseline prototypical CNN by Han et al. As
visible in the table, a simple fine-tuning of a CNN or PCNN and a k-nearest-neighbor
matching yield inferior results to the more elaborate few-shot models.

Model 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way 1-shot
Human - 92.22 - 85.88

Proto (GPT + EI) 92.11 ± 0.10 81.40 ± 0.21 86.03 ± 0.17 72.51 ± 0.28
Proto-Attn (CNN)a 90.12 ± 0.04 - 83.05 ± 0.05 -

Proto (CNN)*a 89.05 ± 0.16 - 81.46 ± 0.13 -
Proto (CNN)b 84.79 ± 0.16 69.20 ± 0.20 75.55 ± 0.19 56.44 ± 0.22

SNAIL (CNN)b 79.40 ± 0.22 67.29 ± 0.26 68.33 ± 0.259 53.28 ± 0.27
GNN (CNN)b 81.28 ± 0.62 66.23 ± 0.75 64.02 ± 0.77 46.27 ± 0.80

Meta-Net (CNN)b 80.57 ± 0.48 64.46 ± 0.54 69.23 ± 0.52 53.96 ± 0.56
kNN (PCNN)b 72.41 ± 0.39 60.28 ± 0.43 59.11 ± 0.30 46.15 ± 0.31
kNN (CNN)b 68.77 ± 0.41 54.67 ± 0.44 55.87 ± 0.31 41.24 ± 0.31

Finetune (CNN)b 68.66 ± 0.41 44.21 ± 0.44 55.04 ± 0.31 27.30 ± 0.28
Finetune (PCNN)b 57.86 ± 0.61 45.64 ± 0.62 37.43 ± 0.42 29.65 ± 0.40

Table 5.1: Performances on the hidden FewRel test set. Included are the baseline models by Han
et al. (2018a) and the hybrid-attention model, Proto-Attn (CNN), by Gao et al. (2019). Proto (GPT +

EI) denotes the model employed in this work.
Source (retrieved march 2019)c: http://www.zhuhao.me/fewrel/

aReported in Gao et al. (2019)
bReported in Han et al. (2018a).
cThe leaderboard also contains two better performing models. However, since these models are unlabeled

and therefore unknown, a fair comparison cannot be made and they are not reported in this table.

Out of the four baseline models Han et al. 2018a have evaluated on the FewRel
dataset, the prototypical CNN performed best. In the 5-way 5-shot and 10-way

1http://codalab.org/
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5-shot setting, the hybrid-attention model outperforms the prototypical baseline
CNN by 5.33% and 7.5%, respectively. These results are again outperformed by the
prototypical GP-Transformer by 1.99% and 2.98% accuracy. In the 5-way 1-shot and
10-way 1-shot settings, the difference to the prototypical baseline CNN is even as big
as 12.20% and 16.07%. Note that the prototypical GP-Transformer was only trained
on the official training set: By retraining it on a combination of the training and
the validation set an even higher performance may be reached. Adding the hybrid
attention mechanism, which was proposed by Gao et al., might also improve the
performance, but was not explored in this work.

Ablation Studies
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Figure 5.5: Ablation studies were conducted on four different settings in the 10-way 1-shot scenario:
(freeze) The GP-Transformer is not fine-tuned on relation classification. (entities) Predict correct
relation solely with regards to the participating entities. (from-scratch) Omit weights and BPE
embeddings of the pre-trained GP-Transformer and train it from-scratch. (BPE only) Only omit
GP-Transformer weights but retain BPE embeddings.

In order to validate if the model behaves differently in the low-resource few-shot
task, the same ablation studies as for relation classification, which were described in
Section4.3, were conducted. Since the ablation studies are only run once, each setting
was evaluated on the same 10k samples in a 10-way 1-shot scenario. The prototypical
GP-Transformer (Proto GPT + EI) is also re-evaluated on these samples (denoted
as original in Figure 5.5). With the exception of the freeze setting, the prototypical
GP-Transformer with entity indicators was also employed for the ablation studies.
In the freeze setting, the Segment-Avg entity indication method was employed (see
Section 4.2), instead of using h<End> as the feature vector. An additional linear
fully-connected layer was also added in this setting, which maps the Segment-Avg
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encoding to size d = 768 2. As visible in Figure 5.5 and similar to the observations
made for standard relation classification, the model performs inferior when it is
not fine-tuned (freeze setting) on the target task (55.6% to 67.55%). Again, a
more elaborate downstream model like a LSTM might be able to achieve a better
performance. When only the two entities of a sentence serve as the input of the
model and the surrounding context is omitted, the model’s performance decreases
by about 13.42%. While the two entities already contain useful information for
few-shot classification, the surrounding context is therefore also of high relevance.
Surprisingly, and in contrast to the results reported for standard relation classification
(Section4.3), the model performs far worse when trained from-scratch or with omitted
GP-Transformer weights and only reaches an accuracy that would also be obtained
by random-guessing a relation. In this case, better results may be obtained by further
adjusting the learning rate or other hyperparameters, which was not explored in this
work.

Influence of Training Relations
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Figure 5.6: To assess the capability of the model to discriminate between observed (training) and
unseen (validation) relations, it has been evaluated on two different settings: In the training setting
(left), a sample of one of the training relations serves as the query, while the ratio of unseen validation
relations in the set of the 10 target relations switches from 0 (10 training relations, 0 validation) to 9
(1 training relation, 9 validation relations). Similarly, in the validation setting, an unseen validation
sample serves as the query, and the ratio of training relations is adjusted.

In the few-shot setting, the neural network must learn to classify completely unseen
relations based on only a few (or even a single) examples per relation type. To
check how the performance is effected when the model must decide between new
relations and already observed relations (the training relations) and if the model
prefers relations it was trained on, an additional experiment was conducted. This
experiment is visualized in Figure 5.6. Two settings were evaluated on the 10-way

2In standard relation classification a higher learning rate improved the results in the freeze setting (Section
4.2). For few-shot relation classification, increasing the learning rate was not observed to have a positive impact.
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1-shot scenario: In the training setting (red line), a sample from the training relations
serves as the query, while the ratio of unseen validation relations in the set of the
10 target relations switches from 0 (10 training relations, 0 validation relations) to
9 (1 training relation, 9 validation relations). In the validation setting (blue line), a
sample from the validation set (unseen relations) serves as the query, while the ratio
of training relations in the set of the 10 target relations switches from 0 to 9. Both
settings were evaluated on 5000 random 10-way 1-shot episodes, with one query
sample per episode. As visible in Figure 5.6, the model performs incrementally
better when the ratio of training relations is increased in the validation setting. This
shows, that the prototypical GP-Transformer learned to create good embeddings
(prototypes) of the training relations, which makes the distinction to unseen relations
easier. In the training setting on the other hand, the model’s performance declines
only sightly when unseen relations are added to the mix.

5.4 Conclusions

In this chapter, the pre-trained GP-Transformer was employed in a few-shot relation
classification setting. Here the model is used to encode sentences, which then form
a prototypical representation of the corresponding relation. In experiments on four
settings (5-way 5-shot, 5-way 1-shot, 10-way 5-shot, 10-way 1-shot), the model
outperforms the baseline, which uses a CNN in conjunction with a prototypical
network, by a maximum of 16% accuracy on the test dataset (10-way 1-shot).
Additionally, the prototypical GP-Transformer outperforms the sophisticated hybrid-
attention model by Gao et al. (2019). The prototypical GP-Transformer employed
in this work is especially dominant in the 1-shot settings, indicating that language
modeling pre-training is important for generalizing from only a few samples. In
addition to this and in conjunction with observations of Chapter 4, the attention
mechanism was confirmed to be a good fit for (few-shot) relation classification: To
form a prototype, the model can specifically attend to those features that are most
discriminative for the corresponding relation.

Albeit the prototypical GP-Transformer obtains a fairly high accuracy when provided
with a single sample per relation (1-shot settings), the model must decide between
just a few classes (10 at maximum). Here the model’s performance already decreases
by more than 6% accuracy when the number of relations is doubled (5-way to 10-
way). In practice, the number of relations between the model is required to decide
may even grow higher than this, depending on the domain. Further research could
therefore concentrate on better separating the relation prototype’s and be less prone
to a higher relation count.
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Chapter 6

Joint Entity and Relation Extraction

The task of relation extraction is composed of several subtasks and often tackled
by employing different models, each solving a single one of these subtasks, in a
pipeline. This includes the extraction of named entities by NER taggers, the decision
if a relation between an entity pair is expressed in the sentence and ends with the
actual classification of this entity pair into a certain relation. However, common
NER taggers like the Stanford Named Entity Recognizer1 and spaCy’s Named Entity
Recognition are only able to detect a limited amount of entity types. Moreover, since
these models are trained on specific samples, they usually must be updated when
employed in a new domain which contains unknown entities. In practice, training
multiple distinct models for relation extraction is expensive, time consuming and
hard to maintain. Ideally, a single model can be trained on the available data, which is
both able to detect probable entities and their boundaries as well as the relations that
hold between them. In contrast to the sole classification of relations, as explored in
Section 4, the task of joint entity and relation extraction (also denoted as end-to-end
relation extraction in this work) is to predict correct relation triples (head, relation,
tail) with a joint model, given only the input sentence. In this case, entities and
relations are correlated: To detect a relation, the target entities must be known. On
the other hand, knowing the target relation may guide the model towards certain
entities.

In this work, relations between entities are extracted by jointly training a single
model end-to-end to detect entities and the relations that persist between them. Like
in Chapter 4 and Chapter 5 the GP-Transformer acts as an elaborate feature extractor,
which yields context-aware embeddings per byte pair encoded token of a sentence.
Entities and relations are then detected by a fast exhaustive search over all plausible

1https://nlp.stanford.edu/software/CRF-NER.html
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entity candidate pairs. Because each sentence is only fed once through the entire
GP-Transformer to obtain the context-aware embeddings, the fast exhaustive search
is feasible even on a large search space of entity candidate pairs. Here an entity
candidate is solely required to consist of arbitrary adjacent tokens, as illustrated
in Figure 6.1. The presented approach is inspired by methods in object detection,
which were shown to efficiently classify object proposals: The Fast R-CNN (Girshick
2015) feds an image once through a convolution neural network to generate a feature
map, which is then used to classify a set of region proposals. As in this work, an
exhaustive search over all potential region (here, entity) candidates is conducted. By
doing that, Girshick demonstrates that the model achieves a high accuracy in object
detection while still requiring a reasonable amount of training and prediction time.

Raymond Fellay (16 January 1932 - 29 May 1994) was a Swiss alpine skier who competed in the 1956 Winter Olympics. 
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Figure 6.1: Joint entity and relation extraction aims at training a single model end-to-end to extract
all entity pairs and the relations between them from a given sentence. In contrast to the standard
relation classification objective, which was evaluated in Section 4, the entity boundaries are not
known in advance and must also be detected in conjunction with the relation for each entity pair.
In this work, a fast exhaustive search over all entity candidate pairs is performed by computing the
probability that each relation is expressed in the sentence between the candidate pair.

Since many relations can exist between different entities in a single sentence, the
model which is employed in this work scores each entity candidate pair indepen-
dently (as visualized in Figure 6.1). To facilitate a fast exhaustive search over all
candidate pairs, several adjustments have been made to the model compared to the
one employed for relation classification. In experiments on both the SemEval and
FewRel dataset the following questions are particularly addressed:

• Since a singe sample should only run once through the GP-Transformer in
order to extract important features, how to best indicate the target entities?

• How well does the fast exhaustive search perform on joint entity and relation
extraction?

• The amount of possible entity candidates can grow significantly with the
sentence length. How to best optimize the fast exhaustive search to reduce
evaluation speed and required resources?
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• Because the model is required to assign a low score to entities that are not
related in a sentence, how can the model be enabled to express that a candidate
pair is not related?

6.1 Related Work

Various different models have been published for joint entity and relation extraction,
especially in the recent years. This section focuses on competitive related approaches
and differentiates them from the fast exhaustive search based approach proposed in
this work.

Kate and Mooney (2010) arrange entities and relations as nodes in a pyramid-
structured graph. The entities form the leaf nodes of the graph and are connected by
nodes which express a potential relationship between the child entities2. Unlike in
this work, Kate et al. assume the entity boundaries to be given in advance, e.g. by
including all noun phrases in a preprocessing step. They then classify each node in
the pyramid graph with two separate SVM’s, one that classifies the leaf node entities
and the other one to classify the relation at each inner node. They also include a “No
Relation” class to express that an entity pair is not related in the given sentence.

Miwa and Sasaki (2014) tackle joint entity and relation extraction as a table-filling
problem, where each cell of the table corresponds to a word pair of the sentence.
The diagonal of the table is to be filled with the entity type of the word itself and
the off-diagonal cells with the relations between the respective word pair. Named
entities are extracted by tagging them according to the BILOU scheme: The BILOU
(Begin, Inside, Last, Outside, Unit) scheme is commonly used for named entity
recognition to predict the boundaries of entities. Here each token is assigned one of
the BILOU tags dependent of it being the begin, last or any other token (Inside) of
the entity. In case the entity only consists of a single token, it is assigned the Unit
tag, while tokens that are not part of an entity are labeled with Outside. Miwa and
Sakasi predict relations for the last word of the corresponding entity (Last or Unit
tag according to BILOU). The table is filled with a label (BILOU + entity tag or
relation type) for each cell by minimizing a scoring function which is based on local
(e.g. POS tags or simple word types) and global features (e.g. combination of two
entity labels, combination of two relation labels...). Miwa et al. then employ a beam
search over the table cells to find an optimal table-filling solution.

2The pyramid-graph is similar to a binary tree, but some nodes have two parents instead of a single one.
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Gupta, Schütze, and Andrassy (2016) also formulate joint entity and relation ex-
traction as a table-filling problem. Unlike Miwa et al. they employ a bidirectional
recurrent neural network to label each word pair.

The stacked model of Miwa and Bansal (2016) is also used for joint end-to-end
relation extraction besides relation classification (as already mentioned in Chapter
4.1). In this case, the bidirectional sequential LSTM first tags the entities of the
respective sample according to the BILOU scheme. Finally, the bidirectional tree-
structured RNN operates on the dependency parse tree between an entity pair to
predict their relation type.

P. Zhou, Zheng, et al. (2017) utilize a combination of a bidirectional LSTM and a
CNN to extract a high level feature representation of the input sentence. A sigmoid
layer is used to predict all relations that are expressed in the sentence. For each
relation, a sequential LSTM then labels the entities according to the BILOU scheme.
Since named entity extraction is only performed for the most likely relations, the
approach by Zhou et al. needs to predict a lower number of labels compared to the
table-filling approaches.

Zheng et al. (2017) first encode each word of the input sentence with a bidirectional
LSTM. A sequential LSTM then operates on each encoded word representation and
outputs the entity boundaries (akin to BILOU scheme) alongside their relation type
and their position in the relation, i.e. if the entity is the head or tail of the relation.
Entities that are tagged with the same relation type are then combined to obtain the
final relation triples. Unlike the other approaches mentioned above and similar to
this work, Zheng et al. do not utilize entity types for the joint extraction. However,
conditions where one entity is related to multiple other entities are not considered,
which limits the practical applications of their approach.

Finally, Bekoulis et al. (2018) also employ a bidirectional LSTM to encode each word
of the sentence. They use character embeddings alongside Word2Vec embeddings to
obtain the input word-level representations. Entity boundaries and tags are extracted
with a conditional random field, which is able to account for neighboring tags to
infer the most likely BIO3 sequence. A sigmoid layer then outputs the probability
that a specific relation is expressed between two words that belong to an entity with
regards to the BIO scheme. In contrast to Zheng et al. (2017), Bekoulis et al. are
also able to detect cases in which a single entity is related to multiple other entities
with their approach.

In addition to the aforementioned joint models, the relation classification models
by Verga, Strubell, and McCallum (2018) and H. Wang et al. (2019), which were

3BIO (Begin, Inside, Outside) is similar to the BILOU scheme but omits the additional Last and Unit tags.
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already discussed in Section 4.1, are also related to the approach followed in this
work: Both models feed a paragraph only once through an attention-based model and
employ the resulting embeddings to classify a given set of labeled entity mentions of
the paragraph. In contrast to this, the fast exhaustive search approach of this work
does not rely on labeled entities and jointly detects both entities and their relations.

In comparison to other joint models, the exhaustive search approach presented in this
work comes with the following fundamental benefit: The aforementioned models
tag entities (e.g. by BIO/BILOU scheme) in a separate step before classifying the
relation between them. However, these models are not able to correctly classify
sentences in which entities overlap:

The VW Golf Engine is manufactured in the Shanghai Plant.

In the above example, (VW Golf Engine, Part of, VW Golf) as well as (VW Golf
Engine, Manufacturer, Shanghai Plant) and (Plant, Part of, Shanghai) are all correct
relation triples. Here the entity “VW Golf Engine” also contains another entity: “VW
Golf”. The same goes for “Shanghai Plant”, which includes “Shanghai” as well as
“Plant”. By employing an exhaustive search over every entity candidate combination,
the model is able to detect all possible relation triples, even between overlapping
entities.

6.2 Approach
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Figure 6.2: An entity candidate consists of adjacent byte pair encoded tokens (left). Candidate pairs
are every combination of entity candidates (right).

In this work, joint entity and relation extraction is performed by exploring the whole
space of potential relation triple hypotheses. The amount of potential hypotheses
that the model is required to examine can either be restricted with the application
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of domain specific heuristics or completely left open. In the most generic case (no
restrictions), a valid entity candidate c ∈ C is solely required to be a subsequence of
adjacent BPE tokens in a sentence s. Given a sentence of l byte pair encoded tokens
s = (t1, t2, ..., tl), an entity candidate is therefore formally characterized by:

c = tn1 , tn1+1, tn1+2, ..., tn2 with n1 < n1 + 1 < n1 + 2 < ... < n2 (6.1)

In contrast to many previous approaches, likely entity boundaries and their relations
are detected in a single step by computing a score φ(c1, r, c2) for each candidate
pair (c1, c2) with respect to a relation class r ∈ R independently. With this, it is not
necessary to extract entities in advance, e.g. by tagging words with respect to the
BILOU scheme.

Figure 6.2 shows an example of all possible entity candidates in a sentence of six
tokens and a selection of resulting candidate pairs. In practice, entity candidates
can also consist of sub-word structures, since the input of the GP-Transformer is
byte pair encoded (see Section 2.2.3). The size of the entity candidate set Cl for a
sentence of length l can be calculated by:

|Cl| =

l∑
i=1

i =
l · (l + 1)

2
(6.2)

Note that the set of entity candidates may be narrowed by applying several heuristics,
which depend on the target domain. This can range from only taking entities up
to a specific size into account to excluding entities that span the entire sentence. It
is even possible to employ a separate NER-Tagger in advance in order to limit the
entity candidates. The size of the set Pl, which contains all candidate pairs, can be
calculated by:

|Pl| = |Cl|
2 =

( l∑
i=1

i
)2

=
l4 + 2l3 + l2

4
(6.3)

Analogous to the amount of possible entity candidates, the set of candidate pairs
can also be restricted by applying several heuristics, e.g. an entity cannot be related
to itself or intersecting entities cannot be related to one another. However, these
heuristics depend on the specific problem where the model is applied to and may be
appropriate in some domains and violated in others. The advantage of employing an
exhaustive search for joint relation extraction is that every combination of entities
and relations is theoretically computable. For example, the commonly used BILOU
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based approaches that were referenced in Chapter 6.1 cannot account for relations
that exist between overlapping entities. When applicable, simple heuristic filtering
can then be used to narrow down the search space and speed up computation.

As shown in Equation 6.3, the amount of candidate pairs increases significantly
(quartically) with the sentence length. For example, the sentence in Figure 6.2,
which contains only six byte pair tokens, amounts to 21 entity candidates and 441
candidate pairs when no heuristic filtering is applied. A single sentence of the FewRel
dataset (≈ 30 BPE tokens on average) therefore contains 465 candidates and 216225
candidate pairs on average. Table 6.1 shows some examples of candidate/candidate
pair counts dependent on the sentence length. As shortly mentioned before, each
relation triple (c1, r, c2) is ranked by a scoring function φ during the exhaustive
search. The score expresses the likelihood that two entity candidates are related by r
and that these candidates are also in the correct order, i.e. the head is placed first in
the triple.

Sentence Length Candidates Candidate Pairs
5 15 225

10 55 3.025
20 210 44.100
40 820 672.400
60 1830 3.348.900

Table 6.1: The amount of candidate pairs,
which the model is required to score, grows
significantly with the sentence length.

Speedup

A naive approach could score a relation triple
by employing the best performing relation
classification model (GPT+EI), which was
presented in Section 4.2. However, since the
candidate pair search space can grow signifi-
cantly with the length of the input sequence,
it is not possible to insert entity indicators
for every candidate pair and run it through
the GP-Transformer: With a batch size of 6004, it takes about one second to classify
274 samples (0.0037 seconds per sample) on a single GPU5. In order to evaluate
a single sentence with 300.000 candidate pair hypotheses6, it would therefore take
more than 18 minutes to get a result for the sentence, which is far too long for most
applications.

Instead, a more suitable approach is to feed the sample only once through the
GP-Transformer and employ the resulting context-aware embeddings in the fast
exhaustive search over the candidate space. In this case, neither entity indicators nor
distance embeddings can be added to the input sequence before the GP-Transformer
in order to indicate the entity candidates. Instead, the post-indication approaches
which where introduced in Section 4.2 provide a good alternative: They perform only
slightly worse than the GPT+EI model and can be applied efficiently after the GP-

4The maximum that fits on a Nvidia Quadro P6000
5A Nvidia Quadro P6000
6In this work, the fast exhaustive search is executed on even more candidate pairs

RheinMain University of Applied Sciences Computer Science (M.Sc.)



Relation Extraction with Attention-based Transfer Learning 94

Transformer. As discussed in Section 4.3, the three evaluated methods (Entity-Avg,
Segment-Avg, Mixed) performed similar well. However, averaging each segment of
the input (Segment-Avg) is more expensive to compute compared to the two other
variants. Since the End token in the Mixed sentence encoding (concatenation of
averaged entities and the special <End> token) is able to additionally weight each
token, this method was preferred over Entity-Avg and is used in an adjusted version
in the end-to-end model.
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Figure 6.3: The end-to-end model that is employed for joint entity and relation extraction operates
differently in the training and inference stage: During training (top) the model is trained to minimize
its loss based on positive and negative samples. Here l refers to the sentence length. The Transformer
embeddings of size d, which correspond to the entities, are summed and concatenated with the
<End> token embedding, which represents the sentence context. The resulting vector m ∈ Rd·3 is
then mapped to the relation classes. After that, the score for each class is computed by applying
a sigmoid activation function. During inference (bottom), a single sample is fed once through the
GP-Transformer and each entity candidate pair is scored independently based on the corresponding
Transformer embeddings.

Figure 6.3 illustrates the end-to-end model’s architecture for training and inference.
In comparison to the model employed for relation classification, two main changes
had to be made to the model’s architecture. First, the Mixed sentence encoding was
adjusted to make the model aware of the length of the entities or entity candidates.
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Because the variance increases when less token embeddings are averaged, short
entity candidates tend to attain extreme scores. Therefore the model cannot infer
the boundaries correctly and was found to prefer sub-words of entities. For joint
extraction, the entities are simply summed instead of averaged to retain length
information. With this, the model obtains information on the entity length based
on the magnitude of the corresponding summed embedding vector. Second, the
softmax function, which was employed for relation classification, was replaced with
a sigmoid to be able to model instances where no relation or multiple relations are
expressed between a candidate pair. By using a sigmoid instead of a softmax, each
relation class is independently assigned a value in the range [0, 1], which expresses
the score or likelihood that the candidate pair is related by the respective relation.

Instead of doubling the number of relation types to predict the directionality of the
relation, the head and tail of the relation are always placed at the same position of the
entity-aware Mixed sentence encoding during training. So if ve1 and ve2 correspond
to the summed Transformer embeddings of the ground truth entity e1, which occurs
first in the sentence, and e2, the second entity, and h<End> denotes the Transformer
embedding of the <End> token, ve1 and ve2 are always placed in the same order
dependent on being the tail or head of the relation (◦ denotes concatenation):

m =

ve1 ◦ ve2 ◦ v<End>, if e1 = head

ve2 ◦ ve1 ◦ v<End>, otherwise
(6.4)

with m ∈ Rd·3 and d denoting the embedding dimensionality of the GP-Transformer.
By retaining this order during training, the model learns to score candidate pairs
higher when the order in m is correct. During inference, each relation is then scored
with respect to (c1, r, c2) as well as (c2, r, c1), where c1 and c2 again denote two
arbitrary candidate entities. Given the entity-aware sentence encoding m, the final
scores for each relation are then computed by:

ŷ = sigmoid(W ·m + b) (6.5)

where W ∈ R|R| × d·3, b ∈ R|R| and ŷ ∈ R|R|.

Training

In the training stage (top of Figure 6.3), the model is trained to minimize its loss
based on batches of positive and negative samples. To asses the ability of the model to
correctly score an entity candidate pair, a binary cross entropy loss is used instead of
the negative log-likelihood loss, which was used for standard classification (Chapter
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4). The binary cross entropy loss is better suited for tasks where a single sample
can have multiple labels (relations in this case) or no at all. This loss is minimized
during training using stochastic gradient descent. A binary cross entropy loss can be
formulated as:

Loss = −

|R|∑
i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (6.6)

where y ∈ {0, 1}|R| refers to the target vector, i.e. a vector that only contains zeros
and ones, indicating which relations are expressed. ŷ on the other hand denotes the
output of the neural network (Equation 6.5). As in (few-shot) relation classification,
this loss is jointly optimized with the language modeling loss.

When the model is only trained on correct relation triples (positive samples), it does
not learn to assign a low score to unrelated candidate pairs. Consider the sentence
“[Douglas Adams]head was an [English]tail author”: When the end-to-end model is
only trained to assign a high score to (Douglas Adams, Citizenship, English), there
is no way to know how to handle (Douglas Adams, Citizenship, author) or (an,
Citizenship, was). To correctly separate real relation triples from unrelated candidate
pairs, the model is therefore trained on batches of positive and negative samples.
Here a negative sample denotes every combination of tokens that is, according to the
ground truth, not related in the respective sample. Figure 6.4 shows a selection of
different negative samples for an example sentence.

anDouglas was English authorAdamsPositive Sample

Negative Samples
(Selection)

anDouglas was English authorAdams

anDouglas was English authorAdams

anDouglas was English authorAdams

anDouglas was English authorAdams

Figure 6.4: Selected examples of negative samples for the annotated ground truth
“[Douglas Adams]head was an [English]tail author”. A negative sample is solely required to not
match the ground truth relation triple.

For each negative sample, the target vector y is filled with zeros. The hyperparameter
β controls the proportion of negative samples in relation to the positive samples
(i.e. the annotated trainings set) in each epoch. So if β is set to 1, negative samples
are just as many as positive samples, if β is set to 2, negative samples are twice as
many as positive samples and so on. In each epoch, β random sentences are drawn
from the training data for each positive sample and negative entities are marked
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which do not match the ground truth entities. As for positive samples, bit-masks
are created in a preprocessing step to be able to sum the corresponding (negative)
entities after the GP-Transformer. Positive and negative samples for all sentences are
then mixed randomly to form the final batches, which are fed into the model. The
whole process of negative sampling is efficiently implemented in PyTorch based on
tensor operations.

Inference

During inference (bottom of Figure 6.3), the model has no notion of the entity
boundaries or the relations that are expressed in a sentence. In a preprocessing step,
entity candidate bit-masks are created for each sentence length l occurring in the
dataset. As explained before, a candidate can be every combination of adjacent
tokens (Figure 6.2). However, additional heuristics can be applied at this step to
further reduce the candidate count. With this, each candidate has a corresponding
bit-mask, which is placed in a matrix Bl ∈ {0, 1}|Cl | × l. These candidate masks are
referenced by their index in B to obtain the bit-masks which correspond to a candidate
pair. The matrix Vl ∈ N|Pl | × 2

0 contains the indices of all possible candidate pairs.
Again, these can be reduced by applying several heuristics at this step. Figure 6.5
shows an excerpt of the bit-mask and candidate pair matrices for a sentence length
of 5 BPE tokens.

B5 =





1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 2
0 0 0 1 0 3
0 0 0 0 1 4
1 1 0 0 0 5
. . . . . . . . . . . . . . . . . .

V5 =





0 1
1 0
2 1
3 4
5 1
1 3
. . . . . .

Figure 6.5: Example matrices that contain the entity candidate bit-masks (B5) and selection of
candidate pair indices (V5) for a sentence of length 5. The indices in V5 refer to rows in B5 and are
used to retrieve the Transformer embeddings which belong to a specific candidate pair.

Each sample is fed once through the GP-Transformer to obtain the final Transformer
embeddings. Then, each entity candidate is extracted by summing the corresponding
Transformer embeddings based on the candidate bit-masks, yielding a matrix U ∈
R|Cl | × d. The Transformer embedding that corresponds to the <End> token is also
extracted at this step. Next, each possible pair of candidates is concatenated with
the <End> token to obtain the final entity-aware sentence encodings M ∈ R|Pl | × d·3

(with |Pl| again referring to the amount of candidate pairs for a sentence of length l)
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by accessing U with the indices of candidate pairs in Vl. Analogous to the training
stage, each entity-aware Mixed encoding m is linearly mapped to the number of
relations |R|. Finally, the sigmoid function is applied to the resulting values in order
to acquire a score for each candidate pair with regards to a specific relation.

Because of the large amount of possible candidate combinations during the exhaus-
tive search, not every inference step can be processed in a single tensor operation.
For example, 1.000.000 candidate pairs would result in a matrix M ∈ R1.000.000 × 768·3

of 32-bit float values consuming about 9 GB of memory space. This number is even
higher because the model operates on batches of samples instead of single samples
to speed up processing. For example, with a batch size of 32, M would consume
about 288 GB of (GPU) memory. To still be able to process all candidate pairs,
the inference stage is processed in chunks in critical places to reduce the memory
footprint. Additionally, in order to speed up the evaluation of a large set of sentences
(e.g. the test dataset), samples are sorted by length and only candidates (pairs) are
evaluated that do not exceed the maximum sentence length in a padded batch (i.e.
by accessing the corresponding matrices Blmax and Vlmax for a batch with a maximum
sentence size lmax). Candidate pairs of a batch, where one candidate includes the
<End> or a padding token, are later masked by setting the score φ(c1, r, c2) for all
relations r to 0.

Prediction Filtering

anDouglas was English authorAdams

anDouglas was English authorAdams

anDouglas was English authorAdams

anDouglas was English authorAdams

anDouglas was English authorAdams

0.7

0.6

0.5

Citizenship

Occupation

0.3

0.2

Occupation

Occupation

Citizenship
Intersection

Intersection

Score

Figure 6.6: Intersecting candidate relation triples are removed in a filtering step. To do this, triple
predictions are first sorted by their score. The algorithm begins with the highest scored triple and
removes each triple with intersecting entity boundaries and matching relation from the set. At the end,
only the highest scored triple of a set of candidate triples that refer to the same ground truth triple is
retained.

After inference, |Pl| · |R| scores belong to a single sentence of length l, i.e. one
sore for each “candidate pair / relation” combination. To obtain the final relation
triples that are expressed in a sample, two filtering steps are applied. First, each
triple with φ(c1, r, c2) < γ is removed from the set of relation triples, where γ is a
hyperparameter that controls the minimum required prediction score. Despite this
filtering, the set of predictions was still found to contain many candidate triples
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that refer to the same ground truth triple, e.g. by containing only sub-words of the
corresponding entities (e.g. “Adams” instead of “Douglas Adams” in Figure 6.6). To
remove the “duplicate” predictions, all candidate triples are first sorted in descending
order by their respective score. The algorithm begins with the highest scored triple
and removes all triples that intersect from the set of triples. Two candidate triples
(c1, r1, c2), (c3, r2, c4) intersect if they express the same relation type (r1 = r2) and
the tokens of the corresponding head and tail predictions intersect, i.e. c1 intersects
c3 and c2 intersects c4. The routine proceeds with the next remaining triple until
all intersecting triples are removed. This process is visualized in Figure 6.6. Note
that this filtering step does not work in every situation, for example when the entity
candidate boundaries do not intersect directly but still refer to the same triple. For
example, if the triple (Douglas Adams, Citizenship, English) is assigned a lower
score than (Douglas, Citizenship, English) and (Adams, Citizenship, English), the
two latter triples would be retrained although referring to the same triple. A more
elaborate solution is left for future work.

6.3 Experiments

Whether the fast exhaustive search over all candidate pairs is a viable choice for
joint entity and relation extraction depends on the actual model’s performance as
well as the inference speed. The purpose of the experiments, which are presented
in this section, is to evaluate both critical points, performance and speed, and to
also asses the effect of different hyperparameters introduced in Section 6.2, like
prediction filtering and the negative sampling rate. Moreover, the German GP-
Transformer, which was introduced in Section 2.3, is employed for joint entity and
relation extraction on a small-scale German dataset. Here it is assessed if the model
scales to a very small training set and how the German-language pre-training aids
generalization to new samples.

Setup

Experiments for joint entity and relation extraction were conducted on both the
SemEval and FewRel datasets. For SemEval, the official split into a train and test set
was used. All samples that are labeled with the “Other” class were removed. For
FewRel, the standard classification train/test split, which was described in Section 3.3,
was used to evaluate the model. Because the end-to-end model can also incorrectly
predict the entity boundaries in addition to the relation type and the direction, four
different settings were evaluated:
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• (plain) A candidate triple (c1, rc, c2) is judged to be correct when the relation
class coincides with the relation of the ground truth triple (e1, r, e2), so when
rc = r. The predicted entity boundaries and direction play no role in the plain
setting.

• (inside) In the inside setting, a triple is deemed to be correct when the relation
class fits the ground truth relation class and the predicted entity tokens lie
inside (or are equal) of the ground truth boundaries. The directionality must
also be predicted correctly, i.e. the head must be placed first in the triple. For
example, “Ford [Prefect]head is a car which was manufactured by [Ford UK]tail”
is correct when the ground truth triple is “[Ford Prefect]head is a car which was
manufactured by [Ford UK]tail”, while “Ford [Prefect is]head a car which was
manufactured by [Ford UK]tail” is not.

• (jaccard) The Jaccard index, also called Intersection over Union, is a similarity
measure between two sets A, B and formally described as:

J(A, B) =
|A ∩ B|
|A ∪ B|

(6.7)

In the context of this work, the Jaccard index measures the overlap between
the boundaries of the entity candidates and the ground truth entities. A sen-
tence is predicted correctly when J(cs

head, e
s
head) ≥ 0.5 and J(cs

tail, e
s
tail) ≥ 0.5,

where cs
head, es

head, cs
tail and es

tail refer to the set of token indices of the respec-
tive entity (candidate) boundaries. Again, the directionality and relation
must also be predicted correctly. For example, “Ford [Prefect]head is a car
which was [manufactured by Ford UK]tail” is correct (Jaccard index of 0.5 for
both candidates), while “[Ford Prefect is a car]head which was manufactured
by [Ford]tailUK” (Jaccard index of 0.4 and 0.5 respectively) is not.

• (strict) In the strict setting, a triple is only deemed to be correctly predicted
when it matches the ground truth triple exactly. This includes the boundaries
of both entities (equivalent to J(cs

head, e
s
head) = 1 and J(cs

tail, e
s
tail) = 1), the

directionality and the relation.

Since the two datasets do not contain overlapping entities, heuristic filtering of
candidate pairs is applied by not considering candidate pairs whose entities overlap
in order to speed up evaluation, unless noted otherwise. However, since detecting
relations between intersecting candidate pairs may be important in practice (as
described in the introduction of this chapter), results obtained without heuristic
filtering are also presented in an ablation studies section. In both the FewRel and
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SemEval dataset, a single relation triple is annotated for each sample. In most
experiments in this section, the model is evaluated to correctly predict the ground
truth triple and therefore no prediction filtering is applied. The performance is
usually measured for the top prediction, i.e. the triple with the highest score, but
a top-k evaluation is also included. Since multiple relations can be expressed in a
single sample, prediction filtering is applied in later experiments to obtain the final
triples, which are manually inspected. The model was trained for three epochs for
both the FewRel and SemEval train dataset. The proportion of negative samples, β,
is set to 6 for both datasets (6x the amount of training samples).
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Figure 6.7: Histogram of entity BPE token lengths for the FewRel (left) and SemEval (right) test
dataset. The maximum entity length is 17 for FewRel and 7 for SemEval. For FewRel, only samples
whose entities are smaller than 7 byte pair encoded tokens are considered (black dotted line), unless
noted otherwise. For SemEval, no samples were removed. Average BPE token length of the remaining
test samples is 3.07 for FewRel and 1.23 for SemEval.

Figure 6.7 shows the byte pair encoded entity lengths of annotated ground truth
samples for the FewRel and SemEval test dataset. The maximum entity length is
17 (1 entity) for FewRel and 7 for SemEval (1 entity). To speed up evaluation, all
samples of the FewRel test dataset that contain an entity which is longer than 7 BPE
tokens were removed. The remaining samples correspond to 95% of the original test
dataset (7584 / 8000). The average entity length of these samples is 3.07 BPE tokens
(3.24 for the full FewRel dataset, see Section 3.3). For SemEval, all test samples
are evaluated. The average entity length of the SemEval test dataset is the same as
for the full dataset with 1.23 BPE tokens (see Section 3.2). Note that training was
conducted on the full training set for both datasets.

The other hyperparameters remain the same as described in Section 4.3 for relation
classification. The Englisch GP-Transformer, which was pre-trained by OpenAI,
is employed for the English FewRel dataset, while the German GP-Transformer
together with the German BPE tokenizer is employed for the translated FewRel
subset (see Section 3.3 for the acquisition of the German dataset).
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Figure 6.8: Accuracy of the top prediction (the relation triple that was ranked the highest by the
model) of each sample in the four settings plain, jaccard, inside and strict. FewRel dataset colored in
red, SemEval in blue.

Figure 6.8 shows the accuracy of predicting the correct ground truth triple for the
four settings, namely plain, jaccard, inside and strict. For each sample, the top
predicted triple, i.e. the prediction with the highest score, was compared to the
ground truth triple. The bars corresponding to the FewRel dataset are colored in red
and for the SemEval dataset in blue. As visible in the figure, the ground truth relation
(plain setting) is predicted correctly in 57.86% (FewRel) and 85.73% (SemEval) of
the samples. Note that the SemEval dataset contains significantly fewer relations (9)
than the FewRel dataset (80), so predicting the correct class is harder for the latter.
Unsurprisingly, out of the three settings that take entity boundaries into account,
the strict setting performs worst with 27.94% and 42.73% accuracy, respectively.
As described before, this setting is very rigorous by only accepting exact matches
of relation, entity boundaries and direction. In the more relaxed settings, jaccard
and inside, the accuracy increases to 32.78% and 51.44% (inside) and 35.14% and
57.14% (jaccard). The training loss curves are included in Appendix C.4.

Table 6.2 shows three examples (ground truth top, prediction bottom) where the
entity boundaries are not strictly predicted correctly by the model, but assessed as
correct in the jaccard setting. The head entity is colored in red and the tail entity
in blue. The topmost prediction shows a typical example where the model did not
correctly predict the full entity boundaries (“Blake” is missing from the head entity)
but still guessed the right entities. The same applies to the second example: Here the
word “book” was predicted to be part of the tail entity while it is not. In some of the
manually inspected predictions, the ground truth annotation was also debatable, as
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Relation Entities

(1) Military Ranka

Major general David Valentine Jardine Blake (10
November 1887-1965) was a senior commander of the Aus-
tralian army who served in both World Wars.
Major general David Valentine Jardine Blake (10
November 1887-1965) was a senior commander of the Aus-
tralian army who served in both World Wars

(2) Notable Workb

the group named itself after the popular children ’s book
Harold and the Purple Crayon by Crockett Johnson...
the group named itself after the popular children ’s book
Harold and the Purple Crayon by Crockett Johnson...

(3) Licensed to
Broadcast toc

Most of his reputation comes from his stint, from 1997
to 2005, as morning man with radio station Choi-FM in
Quebec city, Quebec, Canada.
Most of his reputation comes from his stint, from 1997
to 2005, as morning man with radio station Choi-FM in
Quebec city, Quebec, Canada.

(4)
Place Served by
Transport Hubd

In Porto Alegre on June 24, around 200 protesters gathered
in the city center and traveled toward the airport.
In Porto Alegre on June 24, around 200 protesters gathered
in the city center and traveled toward the airport.

Table 6.2: FewRel predictions that are not correct in the strict setting but in the jaccard setting
(as well as the inside setting for the first and fourth example). The head of the relation is colored
in red and the tail in blue. The ground truth is at the top and the prediction at the bottom in each
example. In the first and second example, the boundaries do not perfectly match the correct ground
truth boundaries, but the entities are correctly guessed. The third and fourth example on the other
hand show wrongly or at least debatable annotated ground truth entities.

a“military rank achieved by a person ([...]), or military rank associated with a position” (Wikidata)
b“notable scientific, artistic [...], or other work of significance among subject’s works” (Wikidata)
c“place that a radio/TV station is licensed/required to broadcast to” (Wikidata)
d“territorial entity or entities served by this transport hub (airport, train station, etc.)” (Wikidata)

shown in the third and bottommost (4) example. In both cases, the model is wrong
in the strict setting, but correct in the jaccard setting. However, in case of the second
example, “Quebec city, Quebec” (the prediction) as well as “Quebec city, Quebec,
Canada” could also be correct dependent on the state or country being included in
the entity, which is not specified in the Wikidata description of the relation. The
third example is clearly not perfectly annotated, with “airport” (the prediction) being
rather correct than the ground truth “the airport”.

A closer manual inspection revealed another problem: Since neither FewRel nor Se-
mEval are specifically designed for end-to-end relation extraction, only a single triple
is annotated for each sentence, although many relations are potentially expressed
in this sentence. Therefore the model was frequently observed to predict a correct
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Relation Entities

(1)
Component-Wholea The grip is fitted over a rear part of a core of the helve of

the hammer.

Component-wholea The grip is fitted over a rear part of a core of the helve of
the hammer.

(2)

Applies to Jursidictionb
In early 2007, Don Stewart, a retired supreme court judge,
called for a royal commission into Victorian police corrup-
tion.

Occupationc
In early 2007, Don Stewart, a retired supreme court judge,
called for a royal commission into Victorian police corrup-
tion.

(3)
Voice Typed William Zakariasen (August 19 , 1930 - September 4,

2004) was an American operatic tenor and music critic.

Country of Citizenshipe William Zakariasen (August 19 , 1930 - September 4,
2004) was an American operatic tenor and music critic.

(4)

Sportf
Joanne Henke (born 5 November 1958) is a former Aus-
tralian alpine skier who represented Australia at the 1976
Winter Olympics.

Participant ofg
Joanne Henke (born 5 November 1958) is a former Aus-
tralian alpine skier who represented Australia at the 1976
Winter Olympics.

Table 6.3: Selection of predicted triples that do not match the ground truth but are actually correct
(ground truth top, prediction bottom). The first example is extracted from the SemEval dataset and the
three other examples from the FewRel dataset. In the first example, a different entity pair is related
in the same sentence, but with the same relation type (“Component-Whole”). The other examples
depict cases where an entirely different triple (including the relation) occurs in the sentence besides
the annotated ground truth.

a“An object is a component of a larger whole” (Hendrickx et al. 2010)
b“The item ([...]) or statement belongs [...] to the value” (Wikidata)
c“Occupation of a person” (Wikidata)
d“ Person’s voice type” (Wikidata)
e“The object is a country that recognizes the subject as its citizen” (Wikidata)
f“ Sport in which the subject participates or belongs to” (Wikidata)
g“Event a person or an organization was/is a participant in” (Wikidata)

triple that is not annotated in the ground truth. This is also partly the reason why
the model performs better on the SemEval dataset (27.94% versus 42.73% accuracy
in strict mode): SemEval contains shorter sentences on average (30.42 BPE tokens
versus 20.91 BPE tokens, as depicted in Chapter 3) and fewer relations, so it is more
unlikely that multiple relations are expressed in a single sentence.

Table 6.3 shows four examples in which the top prediction does not match the ground
truth triple but is a correct relation triple nevertheless. In the first example (SemEval
dataset), the sentence contains multiple “Component-Whole” relations to the tail
entity “hammer”, but the prediction (grip, Component-Whole, hammer) does not
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match the ground truth (helve, Component-Whole, hammer) triple. Examples 2, 3
and 4 show predictions from the FewRel dataset, where a single sentence contains
multiple relations: In the bottommost example (4), “Joanne Henke” is described as
an alpine skier as well as a participant of the “1976 Winter Olympics”. Because such
cases are very common, especially in FewRel, a manual evaluation of 100 random
predictions was conducted for FewRel regarding the strict setting. Out of the 100
predictions, 70 where judged to be correct, i.e. to be a valid relation triple that is
expressed in the corresponding sentence. The accuracy obtained by comparing the
predicted triple with the ground truth was 28% in this case, which is pretty close to
the 27.94% strict accuracy over the whole dataset (Figure 6.8). This shows that the
fairly low accuracy of 27.94% is partially owed to missing annotations and that the
accuracy regarding the top prediction of each sample would be far higher if all valid
relation triples were annotated.
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Figure 6.9: Top-k evaluation of the FewRel and SemEval dataset. The number of considered
predictions per sample increases from 1 (only top prediction) to 10.

Figure 6.9 shows a top-k evaluation of the FewRel and SemEval dataset. When
the ground truth is only checked to be under the top-10 predictions, the strict
accuracy reaches 54.4% (60.35% jaccard) for FewRel and 78.88% (84.5% jaccard)
for SemEval. Note that this only partially accounts for the aforementioned annotation
problems, since subparts of entities are frequently under the top predictions, as shown
in Table 6.4: While the correct triple (2011, Sports Season of, Copa do Brasil) is
also the top prediction with a score of 99.96 (on a scale from 0 to 100), other triples
that contain subparts or neighboring BPE tokens are also assigned a high score. For
example, (2011, Sports Season of, pa do Brasil) has a prediction score of 99.18
and (2011, Sports Season of, the Copa do Brasil) a prediction score of 98.96. This
confirms that a filtering step like the one described in Section 6.2 is necessary to
obtain the final relation triples of a sentence.
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Score Prediction
São José competed in the Copa do Brasil in 2011, reaching
the quarterfinals of the competition [...]

99.96 São José competed in the Copa do Brasil in 2011, reaching
the quarterfinals of the competition [...]

99.18 São José competed in the copa do Brasil in 2011, reaching
the quarterfinals of the competition [...]

98.96 São José competed in the Copa do Brasil in 2011, reaching
the quarterfinals of the competition [...]

95.48 São José competed in the Copa do Brasil in 2011, reaching
the quarterfinals of the competition [...]

94.38 São José competed in the Copa do Brasil in 2011, reaching
the quarterfinals of the competition [...]

Table 6.4: Ground truth (top) and a selection of sorted predictions (relation “Sports Season of League
or Competition”a). As shown in this example, the model frequently assigns a high score to subparts
of entities or sequences that include neighboring words in addition to the entities.

a“Property that shows the competition of which the item is a season” (Wikidata)

Effect of Negative Sampling

Adding negative samples, as described in Section 6.2, is important to make the model
aware of token sequences that express correct entities and to reduce the model’s
confidence in unrelated entity pairs or pairs whose parts do not constitute actual
entities. Table 6.10 shows the effect of an gradually increased negative sampling
rate β on the strict accuracy: Without negative sampling, the accuracy is barely 1%
for the FewRel and 0.27% for the SemEval dataset. By setting the proportion of
negative samples to 0.25 (25% of the amount of training samples), the accuracy
increases to 14.92% and 41.67%, respectively. The model especially performs better
up to an negative proportion of 3 (FewRel, 3x the amount of training samples) and 2
(SemEval) and then only marginally improves. Note however that negative sampling
also has a significant impact on the training duration.

Ablation Studies

To asses the performance influence of some of the decisions which were made
regarding the model’s architecture and choice of different hyperparameters, a set of
several ablation studies was conducted on the FewRel dataset:

• (average) For the task of joint entity and relation extraction, the model is
required to determine the exact boundaries of entities. In order to provide in-
formation about the entity lengths, the Transformer embeddings which belong
to the candidate entities were summed instead of averaged. This experiment
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Figure 6.10: Influence of negative sampling for the FewRel (left) and SemEval (right) dataset. In
both datasets, the top-1 accuracy increases drastically when negative sampling is performed, even in
the lowest setting, β = 0.25. Out of the tested values for β, the best performance was achieved with
β = 6, although the accuracy increases to a lesser extend after β = 3 (FewRel) and β = 2 (SemEval)
(e.g. from 25.90% to 27.94% for FewRel).

assesses the impact on the model’s performance, when an averaging of embed-
dings is performed instead.

• (generalization) The set of samples which the model was evaluated on, con-
tains 4072 entities that also occur in the training set (according to the Wikidata
ID, which is included in the annotated samples for each entity, and text match-
ing). Overall, 7892 entities are distinct to the validation set. Since generaliza-
tion to unseen entities is important for joint entity and relation extraction, the
model was also evaluated on a test set which does not include any entity of the
training set. This leaves a test set with 1731 out of 8000 samples (21.64%).

• (no-filter) Neither the SemEval nor the FewRel dataset contain overlapping
entities in a sentence. Still, detecting relations between overlapping entities
may be important in practice. With the purpose of validating if the addition
of overlapping candidate pairs during influence has a negative impact on the
model’s performance, no heuristic filtering of candidate pairs was applied in
this setting.

• (full) To speed up evaluation, the model was only tested on samples that
contain entities up to a specific size, as described before. In this setting, the
full test dataset is evaluated and candidate entities up to a length of 17 BPE
tokens (which is the maximum entity length of the test dataset) are considered.
Candidate pairs with overlapping entities are also not filtered in this setting
before inference.
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Figure 6.11: Top-1 accuracy for the five different ablation studies: (average) Conduct averaging
instead of summing of the Transformer embeddings that correspond to the entities. (generalization)
Only include samples whose entities do not occur in the training set. (no-filter) Omit heuristic
filtering for candidate pairs. (full) Do not filter samples that contain an entity which is longer than 7
BPE tokens. Evaluation is instead conducted on the full test set. (original) The model of Figure 6.8,
i.e. with heuristic filtering and entities up to 7 BPE tokens.

The first three settings (average, generalization, no-filter) are evaluated on the same
test set as the original model (Table 6.8 and far right of Table 6.11)), which includes
only entities up to a length of 7 BPE tokens. Also, since the settings generalization,
no-filter and full only have an impact on the influence step and not on training, the
model was not re-trained in this case. These settings were just evaluated with the
trained original model. The results obtained under the different ablation studies are
illustrated in Figure 6.11.

Average: By averaging the Transformer embeddings that correspond to the entity
candidates (average study), the model performs better on the plain (59.49% versus
57.86%) and especially the inside setting (38.10% versus 32.78%) but substantially
worse in the jaccard (5.01% versus 35.14%) and strict setting (0.17% versus 27.94%).
Since the model is not aware of entity lengths when the embeddings are averaged,
it tends to prefer single BPE tokens: For example in the sentence “[Nintendo]tail

released ‘[Cobra Triangle]head’ in July 1989” (relation:Publisher7) the top prediction
of the average model is “Ninten[do]tail released ‘[Cobra]head Triangle’ in July 1989”,
while the original model (sum of embeddings) predicted the correct triple. This
behavior is also evident when looking at the average entity lengths of the top pre-
diction: 3.16 BPE tokens for the original model and exactly 1 BPE token for the
average model. So while the original model is pretty close to the average annotated

7“Organization or person responsible for publishing books, periodicals, games or software” (Wikidata)
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entity length of the test dataset (3.07 BPE tokens, see Figure 6.7), the average model
prefers single tokens and is therefore inappropriate for the task.

Generalization: In the generalization study, the model proves to be able to gener-
alize to completely unseen entities: Here the strict top prediction strict accuracy
is 20.79% percent compared to 27.94% when train entities are included (original).
Again, the actual top prediction accuracy is most likely way higher, as shown by the
manual inspection before. Since the entities were not observed during training, the
unsupervised pre-training of the GP-Transformer is probably an important factor for
generalization under this setting.

No-filter and full: Also including overlapping candidate pairs (no-filter) during
inference has only a minor impact on the performance (26.96% versus 27.94% strict
accuracy and 34.02% versus 35.14% jaccard accuracy), although overlapping pairs
do not occur in the two datasets. When the model is evaluated on the complete test
dataset (full setting), the performance decreases from 27.94% to 25.95% (strict).
Considering that the search space drastically grows when longer entities and inter-
secting pairs are included (e.g. from 223.636 pairs to 1.258.884 pairs for the longest
test sentence), this also has only a minor impact on the model’s prediction accuracy.

Exhaustive Search Speed

10 20 30 40 50 60 70
Sentence Length

0

1

2

3

4

5

Se
co

nd
s

Figure 6.12: Inference duration for sentences of a specific length. The duration is displayed in
seconds for single sentences of the test dataset.

Since a reasonable prediction speed is a core requirement for the practical capability
of the exhaustive search approach, the model’s speed with respect to scoring all
candidate pairs (inference step in Figure 6.3) of a sentence was evaluated on the
complete FewRel test dataset. For speed evaluation, no heuristic filtering was applied.
Moreover, the size of entity candidates is not capped, so candidates up to the size of
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each sentence are included. With this, the count of candidate pairs can be calculated
by Equation 6.3 of Section 6.2: The shortest evaluated sentence of the test dataset (12
BPE tokens) contains 6084 candidate pairs and the longest sentence (74 BPE tokens)
7.700.625 candidate pairs. Each single one of those candidate pairs is assigned a
prediction score with respect to every relation. The speed evaluation was conduced
on batch sizes of 32, the maximum that can fit on a NVIDIA Quadro P6000 GPU.

Figure 6.12 shows the inference duration in seconds for single samples of a specific
sentence length. For a short sentence of 14 BPE tokens, the model needs about 0.006
seconds on average and for the longest sentence (74 BPE tokens) 4.97 seconds. The
time that is required to run 300.000 candidate pair hypotheses through the entire
GP-Transformer was approximated in Section 6.2: 18 minutes per sentence. In
contrast to this, the model which is employed for the fast exhaustive search only
needs 0.177 seconds for a sentence with 33 BPE tokens (314.721 candidate pairs).
Extracting candidate pairs after the GP-Transformer, as introduced in this work,
makes the fast exhaustive search therefore feasible in practice.

Prediction Filtering

Relation Entities

Participant ofa
Joanne Henke (born 5 November 1958) is a former Aus-
tralian alpine skier who represented Australia at the 1976
Winter Olympics.

Participant ofa
Joanne Henke (born 5 November 1958) is a former Aus-
tralian alpine skier who represented Australia at the 1976
Winter Olympics.

Sportb
Joanne Henke (born 5 November 1958) is a former Aus-
tralian alpine skier who represented Australia at the 1976
Winter Olympic.

Country of Citizenshipc
Joanne Henke (born 5 November 1958) is a former Aus-
tralian alpine skier who represented Australia at the 1976
Winter Olympics.

Country of Citizenshipc
Joanne Henke (born 5 November 1958) is a former Aus-
tralian alpine skier who represented Australia at the 1976
Winter Olympics.

Table 6.5: Example of final triples obtained by prediction filtering (γ = 0.8) on a sentence that
contains multiple relations between different entities.

a“Event a person or an organization was/is a participant in” (Wikidata)
b“ Sport in which the subject participates or belongs to” (Wikidata)
c“The object is a country that recognizes the subject as its citizen” (Wikidata)

As already illustrated in Table 6.4, subparts of entities and sequences that span
across entities were frequently observed to be assigned a high score. In practice, the
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final relation triples that are expressed in a sentence are usually of high relevance.
In this case, an additional filtering step like the one described in Section 6.2 must
be conducted. Since neither FewRel nor SemEval are fully annotated with every
relation triple, prediction filtering was manually evaluated based on some samples.
In the following examples, the prediction filtering threshold γ is set to 0.8, which
was observed to be a fairly good compromise between precision and recall. Table 6.5
shows an example sentence with the final triples that where predicted by the model
with prediction filtering (see Section 6.2). In this example, all predicted triples are
correct, with “Joanne Henke” being a participant of the “1976 Winter Olympics”,
an “alpine skier” and an “Australian” citizen. The triple (Australia, Participant Of,
1976 Winter Olympics) on the other hand is also correct according to the Wikidata
description and the other ground truth samples of the FewRel dataset for this relation.

Relation Entities

(1) Religiona

Giovanni Maria Gabrielli (January 10, 1654 - September
17, 1711) was an Italian catholic church ’s cardinal.
Giovanni Maria Gabrielli (January 10, 1654 - September
17, 1711) was an Italian catholic church ’s cardinal.
Giovanni Maria Gabrielli (January 10, 1654 - September
17, 1711) was an Italian catholic church ’s cardinal.
Giovanni Maria Gabrielli (January 10, 1654 - September
17, 1711) was an Italian catholic church ’s cardinal.
Giovanni Maria Gabrielli (January 10, 1654 - September
17, 1711) was an Italian catholic church ’s cardinal.

(2) Instrumentb
While in Chicago, he learned the blues harp from Little
Walter and began an association with pianist Eddie Boyd.

(3) Fatherc
She and Kawelo’okalani had no children, although one
source says that Kaukuna Kahekili was the son of
Kawelo’okalani and Peleuli...

Table 6.6: Typical error cases: (1) Selection of final triples after prediction filtering of the given
sentence. As in this example, the model was frequently observed to assign a high score (> 95 in this
case) to unrelated entity pairs, such as (16, Religion, catholic church) and (17, Religion, catholic
church). (2+3) Both examples show predicted entity pairs which might appear in the predicted
relation based on the entity types (e.g. a person and an instrument), but the relation is not expressed
in the sentence between the entities.

a“ Religion of a person, organization or religious building, or associated with this subject” (Wikidata)
b“ Musical instrument that a person plays” (Wikidata)
c“Male parent of the subject” (Wikidata)

However, the overall quality of final triples varied between the inspected examples.
Table 6.6 shows a selection of typical error cases. In the topmost example (1), the
top prediction coincides with the ground truth and the second and third prediction
may be correct according to the vague Wikidata description. The fourth and fifth
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prediction on the other hand also have a high prediction score (> 95), but the cor-
responding entities are clearly not related in the sample. Such cases are common:
The model frequently assigns a fairly high score to relation triples where the relation
and only a single entity is predicted correctly but the other part does not constitute
an actual entity or is unrelated. This makes the selection of the filtering threshold
γ a tough choice. In this example, a higher count of and more elaborately selected
negative samples might improve the accuracy. The two other examples (2+3) of
Table 6.6 show instances where both entities could theoretically be related according
to their entity type (e.g. person and instrument) but are actually not in the corre-
sponding sentence: “Little Walter”, not “Eddie Boyd”, plays the blues harp and
“Kawelo’okalani” is certainly not the father of himself. In such cases, the model pays
especially attention to the participating entities independent of their location in the
sentence. While not explored in this work due to time restrictions, adding additional
information about the sentence syntactic structure, for example with a dependency
parse of the sentence, may be a useful addition to the model.
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Figure 6.13: Accuracy regarding the four settings plain, jaccard, inside and strict on a German
subset derived from FewRel. The German GP-Transformer is used for feature extraction during the
fast exhaustive search instead of the English version. It is either fine-tuned on the target domain (left)
or trained from-scratch (right). The fine-tuned model outperforms the model trained from-scratch in
all settings, especially on those where entity boundaries are considered. When fine-tuned it reaches a
top prediction performance of 20% strict accuracy.

The German GP-Transformer, which was introduced in Section 2.3, is employed
in this work for joint entity and relation extraction on the small German relation
extraction dataset (see Section 3.3). The dataset contains the five relation classes
“Director”, “Country of Citizenship”, “Architect”, “Participating Team” and “Instru-
ment”. Since only 40 training samples are available for each class, the end-to-end
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model is required to generalize from very little training data. The architecture used
for training and inference remains the same as described in Section 6.2, but the
English GP-Transformer is replaced with the German version. The model is then
either fine-tuned on the end-to-end relation extraction task or trained from-scratch
instead (no pre-training). In both cases, the model was trained for 10 epochs and
evaluated on a separate test dataset (see Section 3.3), which contains 50 samples in
total. Training the model for more than 10 epochs had no positive impact on the
performance.

Figure 6.13 shows the accuracy regarding the top prediction of all test samples. As
visible in the figure, the model predicts the ground truth relation triple in only 2%
percent of the cases when it is trained from-scratch. While the model performs better
in predicting only the relation type (60%), it fails in detecting correct entity bound-
aries. When the pre-trained German GP-Transformer is instead employed as the
feature extractor and fine-tuned on end-to-end relation extraction, the model reaches
an accuracy of 20% in the strict setting (24% jaccard, 32% inside). The accuracy of
predicting the correct relation class (plain) also increases to 72%. This demonstrates
the importance of unsupervised pre-training: Even with only a small amount of
samples from the target task, the German GP-Transformer’s outperforms the model
which was trained from-scratch by 18% strict accuracy. Here the unsupervised
pre-training is especially beneficial for generalizing to unseen entities.

Relation Entities

(1) Directora

Trapped and Deceived ist ein Fernsehfilm aus dem Jahr
1994 von Robert Iscove.
Trapped and Deceived ist ein Fernsehfilm aus dem Jahr
1994 von Robert Iscove.

(2) Participating Teamb

In einer Europa-League-Partie gegen Benfica gab er am
selben Abend sein Debüt für den VfB.
In einer Europa-League-Partie gegen Benfica gab er am
selben Abend sein Debüt für den VfB.

(3) Country of Citizenshipc

Gaetano Cicognani ([...]) war ein italienischer Kardinal
der katholischen Kirche.
Gaetano Cicognani ([...]) war ein italienischer Kardinal
der katholischen Kirche.

Table 6.7: Examples of predicted triples, which refer to the correct entities but contain only subse-
quences of the ground truth entities. The annotated ground truth is at the top and the prediction at the
bottom of each example.

a“Director(s) of film, TV-series, stageplay, video game or similar” (Wikidata)
b“[Team] that actively takes/took part in an event or process” (Wikidata)
c“The object is a country that recognizes the subject as its citizen” (Wikidata)
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As explained before, other relations besides the ground truth relation are frequently
expressed in a single sentence. Just like for the English dataset, the results where
manually inspected and evaluated. In 36% of all samples (18/50), the top prediction
was judged to be a correct relation triple which is expressed in the corresponding
sentence. Furthermore, the model was frequently observed to correctly guess the
entities and their relations, but to not fully match the correct boundaries. Regarding
the inside setting, the model therefore reached a higher top prediction of 64%
upon manual inspection. Some examples of this behavior are include in Table 6.7:
Here the model predicts the triple (ed and Deceived, director, Robert Iscove) while
(Trapped and Deceived, Director, Robert Iscove) is actually correct. Similarly, in the
bottommost example the top predictions is (ani, Country of Citizenship, italienischer)
although (Gaetano Cicognani, Country of Citizenship, italienischer) is the right
triple. However, jointly detecting entities and their relations is a tough problem and
promising results where obtained by fine-tuning the German GP-Transformer on a
small amount of data. It is therefore save to assume that more German training data
leads to better results and predicted entity boundaries that better match the actual
entities.

6.4 Conclusions

In this chapter, the GP-Transformer was employed for the joint extraction of entities
and their relations by training a single model end-to-end on this task. By either
using the pre-trained OpenAI model or the German GP-Transformer as an elaborate
feature extractor in a fast exhaustive search, promising results were obtained for
both the English and German language. Moreover, it was demonstrated that a fast
exhaustive search is feasible even on a large search space of several thousand or
even several million candidate pairs. Making the model aware of entities that are not
related during training by adding negative samples to the training set was shown to
substantially improve the performance. In addition to that, a simple filtering approach
that removes intersecting triples was proposed to obtain the final relation triples.
However, since the two evaluated datasets only contain a single annotated ground
truth relation per sentence, the model’s performance could not fully be assessed.
Besides evaluation, missing annotated triples also have a bad impact on the training
stage, since correct relation triples can be presented as negative samples.

Several interesting extensions to the model can be examined in future work on this
topic: For example, adding a separate classifier could enable the model to also extract
the named entity tags of participating entities, which in turn may be beneficial to
detect the correct relation. By extracting and scoring the negative triples of a sentence
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after the GP-Transformer (similar to the inference stage) the training stage could be
speed up even in case of a large negative sampling rate. The model was observed to
score triples high when the relation and only a single entity is predicted correctly but
the other part does not constitute an actual entity or is unrelated. In this case, more
carefully selected negative samples or an adjusted loss that specifically incorporates
the correctness of both entities may mitigate this problem. Manual inspection of test
samples also revealed that the model has difficulties in discriminating which entities
of appropriate types fit an expressed relation, especially in long sentences. This
could potentially be improved by making the model aware of the syntactic sentence
structure, for example by adding information of the sentence’s dependency parse.
Finally, a more elaborate filtering approach than the one used in this work could be
employed to obtain all final relation triples that are expressed in a sentence.
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Chapter 7

Conclusions

In this work, transfer learning was explored for the extraction of relations between
pairs of entities in a sentence. Here the GP-Transformer, a deep and attention
based model which was pre-trained in an unsupervised manner on an English-
language corpus (Radford et al. 2018), is fine-tuned on the relation extraction task.
To also obtain knowledge about the syntax and semantics of the German language,
the GP-Transformer was pre-trained in this work on a large and diverse German
corpus. It was demonstrated by a clustering based approach that the model is able to
generate word representations that are dependent on the specific input context. In
experiments on three relation extraction subtasks, task-specific models that include
the GP-Transformer as its core part were able to achieve competitive performance in
(few-shot) relation classification and yield promising results in a novel fast exhaustive
search based approach for joint entity and relation extraction.

Transferring whole pre-trained models such as the GP-Transformer to a new domain
or task was already shown to significantly outperform previous models, which were
trained from-scratch and often employ fixed word embeddings as input, in various
NLP tasks (e.g. Radford et al. 2018, Peters et al. 2018, Howard and Ruder 2018,
Devlin et al. 2018). In this work, the strength of transfer learning was also confirmed
for the relation extraction task: The employed task-specific models were shown
to converge quickly and to obtain strong generalization capabilities through the
unsupervised pre-training. This is especially evident when the model is required to
learn from only a small amount of data, as shown in few-shot relation classification
and a German joint entity and relation extraction task with little training data. Here
the language modeling pre-training proved to be very effective in reducing the
amount of target domain samples that are necessary to correctly predict the relation
between an entity pair. Since scarcity of labeled data is a core problem for relation
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extraction and other NLP tasks in practice, it is save to assume that transfer learning
will be an important factor for machine learning development in the years ahead.

Many interesting questions have arisen in this work which can be addressed in
future work on this topic: As observed in the explored relation extraction tasks, the
performance drastically decreased when the GP-Transformer was not fine-tuned on
the target task. Still, since training of large models is expensive, further research
could be targeted at the question if there are ways to bypass fine-tuning and use the
rich Transformer embeddings in shallow and fast to train models. Furthermore, the
unidirectionality of the GP-Transformer, which only attends to previous occurring
tokens, is an inherent limitation of the model. The bidirectional model BERT
outperforms its unidirectional counterpart in a number of NLP tasks (Devlin et al.
2018). Therefore using BERT instead of the GP-Transformer as the core of the task-
specific models proposed in this work could further increase the performance. While
a multilingual BERT model already exists, it is interesting to see how it compares
to a pure German pre-training, as conducted in this work with the GP-Transformer.
Although the models that were employed for the three relation extraction subtasks
can all be extended in various ways, the fast exhaustive search, which was proposed
for jointly extracting entities and their relations, is a very promising candidate for
further research. Here the model should especially be evaluated on datasets that are
more suitable for joint entity and relation extraction and compared to state-of-the-art
models. Since the model performs well but not yet perfect, especially for sentences
with lots of clutter between entities, several interesting extensions can be examined
in future work. This includes adding information about the sentence’s syntactic
structure or more complex prediction filtering approaches.
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A Text Generation

240.000, gumbel completion Prager Schinken ( auch: Prager Hermmann ,
Pragertrics , Pragerisch , Pragertricsk ) sind die Ausstellungsreihen der böh-
mischen Speiseeis - und Nahrungsmittelindustrie. Die Märkte und Gastronomieketten
im Zentrum von Prag stehen in Konkurrenz mit Partnern , die sich über die Tätigkeit
in Osteuropa unterhalten. Neben tschechischen Wienern ergänzen auch tschechische
Hersteller gemeinsam mit dem russischen “Sowason” und anderen in den Wiener
Ortsteil Penzing - hier befinden sich Wein - und Küchenbetriebe - den Großteil des
Angebotes dieser Art in Deutschland.
920.000, softmax completion Siegfried Echterhoff ( * 1960 in Neuenkirchen ) ist
ein deutscher Mathematiker. Er ist seit 2014 Professor am Amt für Mathematik und
Naturwissenschaften am Institut für Mathematik der Universität Erlangen - Nürnberg.
Siegfried Echterhoff ist ein Sohn des Psychologen Heinz Echterhoff und dessen
Ehefrau Luise geb. Hentzer. Er war ab 1982 an der Leibniz Universität Hannover tätig
und seit 1986 bei der Straßenbaudirektion Nordrhein - Westfalen in Münster , später
an der Bergischen Universität Wuppertal. Bis 1997 war er Zeichenlehrer an dem Born
Gymnasium Leverkusen und absolvierte 1997 - 2001 ein Studium im Masterstudium
der Mathematik , Physik und...
293.000, softmax completion Misael Vacca Ramírez ( * 5. November 1990 in Coin-
tree County ) ist eine US - amerikanische Tennisspielerin. Ramírez spielt hauptsächlich
auf dem ITF Women’s Circuit , wo sie bis jetzt acht Einzel - und zwölf Doppeltitel
gewann. Ihre besten Weltranglistenpositionen erreichte sie im September 2013 in
Luxemburg und seither oft im Doppel. Vacca Ramírez spielte 2014 und 2015 im Einzel
sowie 2016 im Doppel. Ihre beste Einzelplatzierung in der Tennis - Weltrangliste
erreichte sie im Oktober 2015 mit Platz 343...
1.484.000, softmax random Außerdem entstanden im Laufe der Zeit weitere Manu-
fakturen und große Fabriken in den umliegenden Dörfern, wie 1863 die Glaswerke
Lichtenfels im Zeiselseler Stadtgebiet. Der bekannteste Reliefgestaltungsversuch bei
der Anlage von Steinbrüchen ist ein Areal in Minghua (Nanna-dong) am Standort Süd-
hang des Donduping-Sees im Gebiet rund um Minghua (Donduping), USA, der 1876
eröffnet wurde. In der Nachkriegszeit wurde die große Produktion nach Langfang...
1.444.000, softmax random Na gut ! aber das ist doch der einzige Grund dafür ,
warum diese Aussage auf Wikipedia stehen darf. Du weißt , dass bist Du ja , hast
mehr Erfahrung mit der Materie ; - ) Was genau meinst Du damit. Ich du sage doch ,
hast Du da viel zu tun ? Was ich vor einiger Zeit sagte: Sie sollen üben , wie gesagt ,
nicht solche Themen wo es dieselben Unterschiede gibt , oder ??? Ich weiß nicht , ob
du richtig meldest , aber vielleicht sollten wir mal aufpassen ob es...

Table A.1: German text generation examples.
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B Clustering

...his intervention did not cause the increase in police on site...
...contributing factor for the rapid rise of the free software...

...impact or contribution towards the advancement of the Chinese American...
...here have also been layoffs and reduction in pages ...

The animals most susceptible to the large decrease in water temperature include...
...whose despotic rule clearly marked the decline of the empire...

Table B.1: Synonyms and antonyms of “increase” (layer 6, 38 assignments).

...Quarry at the small mesa known as Table Rock .
...into the downtown haver Hill area, Route 125 crosses...

energy recommended approval of Yucca Mountain for development...
...North London adjacent to Hornsey, Muswell hill and wood green .

Tehama and the other volcanoes near Lassen Peak were produced by subduction...
toward glam and progressive rock , and he was particularly

The song was nominated for best hard rock performance during...
...Motown sound and psychedelic rock sound resulted in...

appointed him editor of the music journal he had founded
...but eventually transformed into a blues recording .

Table B.2: Layer 8: The word “rock” as part of a mountain’s name and related words (top, 330
assignments) and “rock” as a musical genre, again clustered together with related words (bottom, 620
assignments). Note that the English GP-Transformer is case-insensitive, so “rock” is solely clustered
based on the word itself and the preceding context.

...extended north in 1904 making its new address 64-70 broadway.
...have been spammed on my email address that links to my user page...

contributor to wikipedia ’s IP address to his username.
...this tactic was used to address a variety of political themes...

...time adjusting the steering to address a problem of tyre scuffing...
hopefully someone will rise to address the issue.

Table B.3: Two clusters in which the homonym “address” is placed in layer 6. Address as a location
(top, 36 assignments) and as in “speak to” (bottom, 66 assignments).

...elevation of 264 feet (80m) above mean sea level.
with an area of, a mean depth of, and a volume...

mean that in spite of the mean temperature of the warmest
Just because gods sent the signs did n’t mean that mesopotamians believed

However, this did not mean that she retired from public life
...needles can be marketed and does not mean that acupuncture is the...

Table B.4: Clusters of layer 6 that contain the word “mean” in the sense of averaging something (top,
23 assignments) and as implicating something (bottom, 4 assignments).
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Er war Herausgeber des Archivs für Mathematik und Physik und Mitarbeiter.
...studierte er an der Universität Cambridge Theologie und wurde nach...

...im März 1587 zum Doktor der Medizin promoviert wurde.
...Verdienste hatte er sich auf dem Gebiet der Anatomie erworben, als er...

Schumacher studierte nach dem Abitur Architektur an der Technischen...

Table B.5: Clusters of fields of work/study obtained by the German GP-Transformer (layer 8, 229
assignments).

Sie wurde 2002 wiederentdeckt und ist äußerst selten.
Im Dezember 2006 wurde vom Flughafen Dresden aus Atommüll...
Im Dezember 2006 wurde vom Flughafen Dresden aus Atommüll...

Seit September 2002 nutzt das Maxim-Gorki-Theater einen etwa 80 Meter...
Seit 1992 ist die Stadt wieder Sitz des Landesamtes...

Von Figura war von 2005 bis 2010 Präsident der Georg-August- Universität zu Göttingen.
Im Frühjahr 2005 gewann er die Poreč Trophy in Kroatien.

Table B.6: Year numbers occurring mostly in the beginning of sentences (layer 5, 391 assignments).

Bei der Sanierung des Mutterer Tunnels und der Mutter er Brücke (Mühlgrabenviadukt)...
...Haltestelle Burgstall passierend, zum Bahnhof Mutter s.

...frequentiert wird, da sie die Talstation der Mutter eralmbahn gut erschließt.
...mit seinen Brüdern und seiner Mutter Anna Wimmer in der Kinobranche...

...Alexander Ogarkow wird von seiner Mutter Ljudmila Ogarkowa...
Nach dem Krieg arbeitete die Mutter als Schneiderin und Verkäuferin...

Table B.7: Two different clusters (layer 9), containing the term “Mutter” (mother) as part of the Aus-
trian town “Mutters” (top, 425 assignments) and as a mother of children (bottom, 590 assignments).

4 Taler Pacht jährlich und 6 Groschen Steuer an die Gemeinde...
das Rittergut Walda um einen Steuer erlass für die...

Erträgen ihres Eigentums und den Steuer einnahmen als Inhaber...
...wurde im Verlauf des Tages auf der Steuer bordseite montiert.

...dieses System eine getrennte Steuer - und Hauptbremsleitung ...
...konnte sich auch zeitweise hinter das Steuer eines Rennwagens setzen.

Table B.8: Two clusters of layer 7, containing the word “Steuer” mostly in the “tax” sense (top, 1444
assignments of mostly related words) and mostly in the “controller” sense (bottom, 53 assignments)
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C Loss and Prediction Plots
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Figure C.1: Relation classification trainings loss (left, averaged over each batch) and test set official
macro-F1 (right) of the SemEval dataset, plotted after each epoch.
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Figure C.2: Relation classification trainings loss (left, averaged over each batch) and test set macro-F1
(right) of the FewRel dataset, plotted after each epoch.
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Figure C.3: Few-Shot relation classification (10-way 1-shot setting) training loss over iterations,
averaged over the respective batch, and validation set accuracy (right), measured over 100 episodes at
each step.
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Figure C.4: Joint entity and relation extraction training loss. FewRel dataset (left) and SemEval
dataset (right), plotted over iterations and averaged over the respective batch.
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D SemEval Scores

Model M-F1
Entity-Aware BERTSP
(H. Wang et al. 2019)

89.0

Multi-Level Attention
(L. Wang et al. 2016)

88.0

GPT + EI
(own)

87.34

TRE
(Alt, Hübner, and Hennig 2019)

87.1

SDP deep RNN
(Xu, Jia, et al. 2016)

86.10

Attention CNN
(Shen and Huang 2016)

85.9

Tree+Seq RNN
(Miwa and Bansal 2016)

85.50

Entity Attention Bi-LSTM
(Lee, Seo, and Choi 2019)

85.2

CR-CNN
(Santos et al. 2015)

84.10

SDP-LSTM
(Xu, Mou, et al. 2015)

83.70

DE-CNN
(Zeng et al. 2014b)

82.70

MV Tree-RNN
(Socher et al. 2012)

82.40

Table D.1: Relation classification results on the SemEval dataset (Hendrickx et al. 2010).
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